
Random matrices and attractors – technical exposé
Morgan ~ 9/21
DRAFT – a thoughtdump!

    I'm interested in understanding matrices with multiple eigenvectors of maximal eigenvalue 1 in order 
to identify the potential of recurrent neural network attractors. To do so, I'd investigate the attractors 
emerging from large random matrix processes and their relative properties. This investigation might 
identify a way that neural networks could implement finite state machines and other virtual neural 
networks.

    Some background on stochastic matrices. Any real stochastic matrices (Markov chain processes) 
with (contingently) a spectral radius of 1 having a single eigenvector of eigenvalue 1 (ie and where all 
other eigenvectors have eigenvalues less than 1 in absolute value), then repeated application of the 
matrix operator is guaranteed to converge to that eigenvector as the unique stationary lowest-energy 
distribution state from any initial state. When there are more than one eigenvector sharing eigenvalue 1, 
each of these stationary distributions are (equally??) likely, stationary, stable, and lowest-energy, and 
the one converged to depends on the initial distribution; [[ recursive macro on convexity of 
stationaries? ]]. (However, a stochastic matrix with any amount of randomness will almost surely not 
have its eigenvalue 1 have multiplicity greater than 1.)
    In linear neural networks, training* adjusts the feedforward matrix layer towards being a matrix of 
orthonormal eigenvectors*. Specifically, the network tends to focus its training improvements on the 
single strongest mode until it's learned fully and then proceeding to optimize for the next mode, up 
until the matrix is saturated into a full-rank suite of eigenvectors. (This mode-by-mode behavior 
concords with the Low-Rank Approximation via Eckart–Young–Mirsky theorem.) Therefore, the 
number of stationary optimal distributions tends to increase.
    Attractors, as they are called in dynamical systems, are observed in biological neural network (such 
as in grid and place cells*) and in idealized/theoretical recurrent models such as the Hopfield network. 
From work in dynamical systems, it's well known that attractor states are located at eigenvector states. 
This is no coincidence: it is a consequence of Markovity / ergodicity of such a system. However, it is 
also well known that in grid and place cell ensembles, states can be held stationary in one of many 
attractors. For example, head direction cells implement ring attractors, a collection of attractors that are 
individually state-stationary but permit states to move to adjacent states if the creature moves (and 
integrates) its head direction angle. The presence of many attractors accords with the expectation that 
these an adult brain's neuron ensembles for fundamental motion and sense of location and direction are 
more or less fully-trained.
    The open questions lie in understanding multiple attractors. What are their shapes? (This is 
somewhat solved. I'm still digesting the results.) What are their interplay? (This is likely 
solved/resolved, and I've yet to locate the results.) What does it take to move a state from one attractor 
to the next? (A relatively easy problem amounting to orthogonal vector arithmetic for some kinds of 
matrices. Some results: such transitions must be symmetric ,by maybe 'detailed reversibility' M_ij p_i = 
M_ji p_j?; MCMC methods or temperature-based simulated annealing procedure would be available 
for experiments; ...). How do attractor-bumping external inputs interact with the attractor eigenstates 
especially as they train -- need they require an external utility such as a handling network? And, what 
I'm most curious about, how do the answers to these questions shed light on the plausibility of neurons 
implementing a virtual state-machine automaton*? If these attractor machines are implemented by 
parallel distributed neural networks and cursorily resemble the activity of neurons themselves* (and 
would therefore be recursive), do they implement distributed state machines, and what are the 
properties of such distributed automata?
    Other questions of related but tangential curiosity and would benefit first from a careful literature 



review: Do distributed attractor systems have a fundamental distinction between states and actions 
between the states? Neuron trained knowledge held in synapses is somewhat inextricable from activity 
invoking those synapses. Do tensor-product units or high-order networks have a role in random matrix 
attractors for neural networks, such as in the LSTM?
    I propose:

a)   examining the eigenspectra of different kinds of random matrices as models of linear neural 
network layers, such as those defined by stochastic matrices, matrices those with restricted 
values such as ternary (a la Hopfield networks), binary (for which there seems to be substantial 
work done especially in spectral graph theory), nearly-orthogonal, network layers along training 
course, etc. I've started running simulations of the eigenspectra of such matrices in 
<https://github.com/taoketao/random_matrices_and_eigenvalues>. In accordance with the 
literature, the distributions of eigenvalues of many matrices follow the Marchenko-Pastur 
distribution, which is characterized by the motif y=sqrt(1/x-1). I hope to develop some insight 
into quasi-eigenvalue 'stationary distributions' of proper neural networks layers, i.e., linear 
matrix operators adorned with nonlinear activation functions; cf. “Correlation Between 
Eigenvalue Spectra and Dynamics of Neural Networks” by Qingguo Zhou, Tao Jin, Hong Zhao, 
2009.

b)   simultaneously, continue & finish reviewing and digesting the results and answers to the 
questions I've asked that already exist in the literature. There's plenty to learn from specific 
papers and from the general study of stochastic processes, dynamical systems, thermodynamics, 
spin glasses, the expository and empirical work and mathematical treatments of Hopfield 
networks / Boltzmann machines, linear algebra, theory of computation, the works of Saxe, 
Ganguli, Lake, Smolensky, McClelland and Rumelhart, high-dimensional applied statistics and 
optimization (i.e. 'machine learning'), deep learning frontiers, and data from neuroscience and 
behavioral cognitive science and spatial cognition.

c)   subsequently, gain familiarity with and intuition for multiple-attractor systems.
d)   subsequently, make concrete hypotheses and questions about attractors as automata.
e)   simultaneously, make concrete mathematical analyses or hypotheses+questions about the 

recursive implementation of neurons and consequences of a positive result.

* 'training': rigor and specification pending. See Saxe, McClelland, and Ganguli, 2013 and 2019. And, 
generally speaking, while these results have been suggested to be similar for nonlinear layers (pers. 
comm. PDP lab group ~2017 by jlmcc, Stephen Hansen, Andrew Lampinen), this kind of analysis has 
not to my knowledge been widely applied to recurrent network layers. Furthermore, the connection 
between gradual acquisition of orthonormal eigenvectors which correspond to attractors is not tied to 
the question of point, the behavior of multiple viable attractors.
* 'orthonormal eigenvectors': if the orthogonal eigenvectors are not normalized, proper normalization 
can be achieved by, for example, competitive learning paradigms embraced in theoretical neuroscience, 
rendering this a minor concern if any. Source: Andrew Lampinen, pers. comm. Rigor pending.
* 'grid and place cells': while it is relatively common knowledge that these work by means of attractors, 
the statement could use direction to evidence and support
* concerning neural networks as finite-state automata: read, for example, “Turing computability with 
neural nets, Siegelmann and Sontag, 1991” and its references.
* 'resemble the activity of neurons themselves': A conjecture! But intuitively plausible: neurons, which 
hold (fleeting) activation states accessible to many other external processes -- as do attractors -- and are 
modified by inputs with specific linear-hyperplane thresholds akin to the (linear-hyperplane?) edge of 
two attractor basins, do parallel distributed computing. Based on these characteristics, it would seem 



that a recurrent layer of neurons could itself implement a virtual recurrent layer of neurons – albeit, 
about 0.138 times as large as the base. The question lies in the consistency (~systematicity) of 
activations between neurons and state transitions, the vertical interactions between recursive levels of 
hypothetical virtual neural network layers.


