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Abstract

Nature has discovered how to evolve intelligent systems, but our current deep
learning methods rely on a great deal of manual configuration and human oversight.
Neuroevolutionary methods offer a promising alternative to standard methods for
designing and training neural networks. This literature review places the problem
in context and surveys the existing work on neuroevolution in deep learning, much
of which has been published very recently. This work also offers commentary on
future directions for research, from the perspective of students in computer science
with knowledge of the problems and methods of theoretical neuroscience.

1 Introduction

Applying deep learning methods to real-world problems involves numerous design challenges in
choosing network architecture, tuning hyperparameters, configuring weight initialization, etc. While
these decisions are often made through “intelligent design”, where a deep learning engineer produces
a solution based on their own knowledge of the field, it seems intuitive that better decisions can be
made through biologically-inspired, evolutionary approaches.

Leveraging advances in computing power, recent work has found success with neuroevolutionary
approaches in both designing and training deep neural network models. Evolutionary techniques
have a rich history and offer unique advantages on reinforcement learning tasks and the design and
training of convolutional neural networks, recurrent neural networks, higher-order neural networks
(such as pi-sigma networks), and other types of deep learning models.

Our goal in this literature review is to give background on neural network training and design,
provide a framework for thinking about evolutionary approaches, and then survey the specific existing
applications of neuroevolution in deep learning. Finally we will discuss future directions for research,
including model compression and defensive mechanisms to adversarial attacks.

2 Training Neural Networks

Artificial Neural Networks are capable tools for solving a variety of problems for numerous reasons,
chief among which are the high information capacity and computational inexpense at test time.
However, networks must be trained before they can be used, and before they can be trained, their
‘topology’ must be decided: that is, layer structure, data representation, and other factors collectively
called hyperparameters.

The training of neural networks has received significant attention [53, 18] and effective methods
are rather well understood. However, hyperparameter design is much more hazy and their tuning
is usually done manually [51]. Evolutionary algorithms, however, are capable of automating both
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aspects [58], and for this reason, their study is worthwhile as one of the first potentially viable
methods for doing so.

Hyperparameter optimization. For practical networks, there are often many parameters that can be
tuned, such as learning rate schedules, network structure choices, or update mechanism in the simplest
of neural networks. In more complicated networks such as Convolutional Neural Networks (CNNs)
or Recurrent Neural Networks (RNNs), there are often orders more parameters that can be considered.
Often only several of the tunable parameters make critical differences. This landscape results
in the challenging task of identifying good values of numerous nonlinearly-interacting variables.
Furthermore, this problem is especially monumental in neural network research because it takes such
a significant amount of computation to train a single network that usual hyperparameter identification
strategies are often infeasible. [47]

One parameter space that is particularly difficult to search is in determining an effective network
structure. In feedforward networks, this reduces to determining number of layers, layer sizes, and
activation choices; however, most real-world deep learning applications use networks at least as
complicated as CNNs or RNNs, which have significantly more hyperparameters. In CNNs, additional
selection choices include a options for filters and pooling/convolutional/dense layer patterns; for
vanilla RNNs, any layer can be made recurrent, each of which has its own unique layer back to itself.

However, much of the recent success in modern network research has come from even more compli-
cated networks. Some examples are:

• The LSTM [35]: this type of network replaces the standard recurrent cell with two layers
for the input and the recurrent state to a new ‘black box’ containing four recurrent cells on
the input and the previous state representing the input, output, forget, and state.

• DenseCap solution to image captioning [42]: this network finds a solution to the problem
of jointly recognizing a visual image and responding with a semantic description of the
image. It does so by first passing the image input to 18 convolutional and pooling layers,
fed to a series of layers that localize and warp features, fed finally to an LSTM for language
generation. That is, this network has all the parameters of CNNs, RNNs, and more as
tunable parameters.

• The Neural Turing Machine (NTM) [23]: this network defines a cell that has a functional
memory module with a read-write controller accessible to a feedforward or LSTM network.
The original paper identifies novel tunable hyperparameters of memory size, number of read
and write heads, and maximum location shift.

Each of these models more than twelve parameters to tune, which already is too many to do brute
searches on in most contexts.

Besides the engineer’s problem of tuning hyperparameters for a given type of network, the research
must also determine which type of network structure to use, a problem whose optimum is even more
unclear. There have been several attempts at determining reliable, effective ways to identify good
hyperparameters, but not many. In the clearest example of recent work on this, Jozefowicz et al. [44]
attempted to search for architectures that would outperform GRUs and LSTMs. While they were able
to identify numerous comparable structures and several better structures, their relatively naive search
strategy involved primarily random alterations to baseline GRU structures searched via beams, which
only allowed them to find qualitatively similar architectures, even when they used their full extent
of computational resources. These researchers made the point that in order to identify more diverse
networks using their strategy, much more computational resources would be necessary.

These realities have left practical hyperparameter tuning as a task to be done manually by experts
or guided manually using iteration using large computation at their disposal. Even at this level,
hyperparameter search is still coarsely planned. In these scenarios, there are some rules-of-thumb for
manual hyperparameter search, most as simple as a grid search [51] or random (e.g. Monte Carlo
search) or quasi-random (eg, Latin hypercube) search [5], although the authors Bergstra and Bengio
[5] acknowledge that random search (or any other strategy they proposed) is unable to reliably find
optimal parameters in some kinds of networks.

Unfortunately, the current search methods as described in Bergstra and Bengio [5] work well primarily
only in low-dimensional spaces on real-valued or categorical parameters [38]. Recently a family of
model-based strategies have been proposed called Sequential Model-Based Optimization or SMBO.

2



These meta-algorithms attempt to automatically choose a set of hyperparameters, or algorithm, that
will perform well, and they do so by iterating between fitting a model and choosing good next
hyperparameters to explore. Broadly, SMBO methods define schemes for identifying best-parameters
for and deciding next parameter configurations to explore. These methods attempt to model the
hyperparameter space and are ready to be extended as model-free or as Bayesian processes [38].
Sequential algorithms can achieve success in parameterizing deep belief networks [6], but some work
has shown that random search is often competitive with it, indicating a vacancy for improvement.

Sequential optimizers, however, maintain only approximately one ‘best-so-far’ estimate and are only
able to supplant that champion with a single better parameterization. Additionally, they are primarily
effective at searching in a compact hyperparameter space and have not been demonstrated to be
effective at designing algorithmic architectures to our knowledge. On the contrary, Evolutionary
Algorithms, competitors to SMBO methods, can fundamentally reconcile and combine the capabilities
of multiple successful parameter settings. In the remainder of this study, we analyze evolutionary
approaches as another viable alternative to initializing networks.

3 Evolutionary Algorithms

There are four major paradigms of evolutionary algorithms, which are helpful to understand in
comparing different approaches to evolving neural networks. Genetic algorithms (GA) are the most
popular type, and are based on a genotype/phenotype model inspired by biology. The genetic encoding
typically occurs in a binary space, and the algorithm allows the models to evolve over time with the
goal of increased performance. Within the context of deep learning, the phenotype of a neural network
model is the specific architecture, weights, hyperparameters, and so on. Evolution strategies (ES)
differ from GA in that the genotype space is real-valued, and the algorithm is controlled by mutation
parameters that generate new candidates. Evolutionary programming allows each parent to produce
an offspring uniformly, but exerts selection pressure on the offspring, and keeps the structure of the
program fixed while the numerical parameters are allowed to vary. Genetic programming is similar
to GA, but the evolution occurs on programs, which have an enormously large state space. [100]

4 Neuroevolution

Neuroevolutionary methods encompass a wide variety of biologically-inspired approaches to intelli-
gent system design. Based on the notion of fitness from natural selection, one can evolve models with
the goal of performing better on a given learning task. The design space of these methods includes
the candidate generation / selection and the fitness function / approximation. In many deep learning
scenarios, the algorithm is tuning weights via stochastic gradient descent, which narrowly limits
the system adaptations that are possible. It is up to the research scientist to specify the topology,
figure out the hyperparameters, and tune performance. The goal of neuroevolutionary methods in this
context of deep learning model development are to outperform the research scientist through iteration
and adaptation. These methods have been popular in the field of reinforcement learning, and have
historically found success on tasks that lack a gradient, are partially observable, or have a large space
of states and actions for the learning algorithm to explore in order to find a good solution. [54]

The genetic encoding of neural networks is an open research problem, and increasingly sophisticated
types of encodings will be needed as the field progresses. The simplest type of encoding, known as
conventional neuroevolution (CNE), works by storing all of the weights of a given architecture in
sequence. This is a type of direct encoding, with other variants encoding component-level features
and topological information. Indirect encodings map to the biological notion of DNA, yielding more
compact and modular solutions than can be achieved through direct encoding. Indirect encodings
fall into two major categories – grammar-driven and cell chemistry-driven – and can be analyzed
along five dimensions in the taxonomy proposed by Stanley and Miikkulainen. These dimension are
cell fate, targeting, heterochrony, canalization, and complexification, which give a logical system for
analyzing the properties of these "embryogenic" systems for indirect encoding. [90]

Before proceeding into modern work, we thought it would be helpful to briefly survey some of the
major examples of neuroevolution methods that are commonly referenced in the literature and helped
to inspire some of the approaches that we will discuss later on in this survey.
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Angeline et al. [1] introduced GNARL, an evolutionary approach to constructing RNNs. Direct
encoding was used in this work, and evolutionary programming was determined to be better for this
problem than genetic algorithms. They found that more interesting topologies and architectures arose
when the model design was not directly managed by a human programmer.

Yao and Liu [105] also used direct encoding and evolutionary programming in their work on EPNet.
By evolving weights and architecture in parallel, through effective mutation operators, models were
developed with strong performance and compactness properties.

Gruau et al. [28] introduced an approach called Cellular Encoding that provided a viable alternative to
direct encoding for an evolutionary approach to the pole-balancing problem. Their approach encoded
both the weights and the architecture, along with syntactic constraints on the possible architectures
for the problem. A fitness function was provided that enables the neural network to learn without the
velocity provided as input for the pole-balancing problem.

Stanley and Miikkulainen [89] introduced the Neuroevolution of Augmenting Topologies (NEAT)
method, which used genetic algorithms to achieve top performance on the pole-balancing benchmark.
Their method focused on the intermediate structures rather than just the final product. This work is
one of the most-cited in the evolutionary algorithms literature, and has inspired many variants.

In later work, Stanley et al. [91] extended the NEAT approach with Hypercube-based Neuroevolution
of Augmenting Topologies (HyperNEAT). HyperNEAT used an indirect encoding scheme called
connective Compositional Pattern Producing Networks (connective CPPNs), which improve upon
previous work by the capacity to generate regular patterns of connections, much like in the brain.

Siebel and Sommer [86] suggested the Evolutionary Acquisition of Neural Topologies, Version
2 (EANT2) approach, which maintains a clearer separation of structural adaption and parameter
optimization as compared to prior work. They use mutation operators for generating new structures,
and leverage Covariance Matrix Adaptation Evolution Strategy (CMA-ES), [31] a derandomized
variant of evolution strategies, for the parameter optimization.

Gomez et al. [20] proposed Cooperative Synapse Neuroevolution (CoSyNE), which extends the idea
of creating modular structures through evolution to creating modular sets of weights that evolve
together. This strategy resulted in improved performance on the pole-balancing problem.

We will now survey the modern usage of evolutionary techniques in recent work, spanning convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs), reinforcement learning (RL), and
higher-order networks (HONs). While techniques can be relevant to multiple categories, the nature of
the network often has an influence on the evolutionary approach used in the work.

5 Evolving Neural Architectures

5.1 Convolutional Neural Networks

Convolutional neural networks have seen remarkable success on a wide variety of computer vision
tasks over the past few years, starting with the success of AlexNet on the annual ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). Researchers have proposed many improvements to
this original architecture, which have increased the number of parameters and possible design choices.
In general, increasing depth (VGGNet), developing smart modules (GoogleNet), and optimizing
gradient flow through skip connections (Residual Networks) have been winning strategies. However,
these models are only the tip of the iceberg, and the reasons for their success, particularly in the case
of ResNets, is not well understood. Given the Cambrian explosion of new model architectures in
the literature, and the high level of technical expertise necessary to propose innovative architectures,
evolutionary methods show great promise in this domain. These methods generate interesting
structural improvements and display advantages on weight / hyperparameter selection for training the
convolutional neural networks. We discuss both specific techniques and large-scale experiments that
have been developed and performed very recently, and hope to give a sense of the fresh enthusiasm
for these approaches to deep learning model creation.

Loshchilov and Hutter [55] proposed using the CMA-ES technique for hyperparameter optimization
of a CNN trained on the MNIST dataset, commonly used as benchmark for image classification. The
CMA-ES method was mentioned previously as a technique for parameter optimization in the EANT2
strategy. They compared this method to GP-based Bayesian optimization as implemented by the
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Spearmint package, and trained on 30 GPUs (an indication of the horsepower required for this kind of
work). The CMA-ES method consistently achieved better validation accuracy on MNIST. In addition,
this method parallelizes very naturally, making it a good fit for distributed training scenarios.

Fernando et al. [13] evolved the CPPN architecture mentioned earlier to support gradient descent,
resulting in Differentiable Pattern Producing Networks (DPPNs). These DPPNs could replace CPPNs
in a HyperNeat-like framework, but the authors found that a Lamarckian evolution based approach
performed better than this approach or Darwinian/Baldwinian evolution. In the end, an approximately
convolutional neural network was discovered through evolution rather than by design.

Miikkulainen et al. [60] published a landmark work this year on evolving deep neural networks
using an improved version of their past work, namely DeepNEAT and CoDeepNEAT. As opposed
to NEAT, the DeepNEAT method encodes the properties of layers rather than neurons, in addition
to the hyperparameters of the training. CoDeepNEAT extends this with a coevolution method that
facilitates the generation of blueprints that mimic the role of human-designed modules such as the
Inception module in generating networks based on deep repetition. Experiments were run on the
CIFAR-10 dataset, achieving a comparable error rate and rapid training time.

Real et al. [74] worked on the application of evolutionary techniques to the creation of image
classifiers, with a focus on making the process require as little configuration as possible and function
well in a distributed setting. Their work is compared to other work from Google, which used
reinforcement learning to hone the classifiers. [108] They develop an independent approach from
NEAT in this work and base the reproduction mechanism on the notion of tournament selection.
Models were evaluated on the CIFAR-10 and CIFAR-100 datasets, and the final models achieved
performance comparable to that of the reinforcement learning approach. [19] Future work for this
approach includes reducing the computational cost of the evolutionary experiments, which was on
the order of 1020 FLOPs for their work, which spanned five experiments.

Desell [10] worked on a similar approach that used a volunteer computing project rather than Google’s
compute infrastructure. Their algorithm, Evolutionary Exploration of Augmenting Convolutional
Topologies (EXACT), is more similar to NEAT, and achieved good results on MNIST given the
simple backpropagation strategy. The evolved CNNs are remarkably different from human-designed
CNNs, and display some of the trademarks of biological evolution, such as vestigial features. Some
networks yield many disconnected nodes, and some of the node patterns resemble the input/ouput
patterns of neurons found in the cerebral cortex.

Mundt et al. [62] discuss the challenges of reaching optimal representational capacity when designing
and training neural networks and propose a metric for evaluating the importance of each feature in
the network. This gives an approach for pruning, or, on the other hand, bottom-up network creation.
The latter approach yields novel architectures that have reduced size or improved accuracy compared
to standard architectures for convolutional neural networks.

Suganuma et al. [92] use a Cartesian genetic programming approach to develop convolutional neural
network architectures. This work differs from other works in that it uses direct encoding for the
representation, which allows for more flexibility in design. The search space is reduced through
highly functional modules, such as convolutional blocks and tensor concatenation. This differs from
other approaches such as Real et al. [74] which hoped to avoid high-level unit specification. Fitness
was evaluated on the CIFAR-10 classification task. Since many of the hyperparameters were already
specified, this work had lower computational cost than other approaches.

5.2 Recurrent Neural Networks

Recurrent neural networks, or networks with cyclic connections and reusable units that are charac-
terized by their suitability for sequential tasks, are widespread in modern deep learning. Broadly,
evolutionary techniques have been recently demonstrated to indeed improve recurrent network weight
training and architecture design in a number of contexts. However, evolved RNNs have yet to find
a commercial or wide-scale application [3]. Here we outline the work that has been done so far to
warrant and advance RNN evolution – most of which is rather recent.

There has been significant interest in determining effective RNN cell variations. Numerous studies
[33, 25, 51, 44, 11] have taken a look at the most successful recurrent cell today, the LSTM, and
analyzed whether or not its expert-chosen features were in fact ideal. All were able to find variants
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that are at least comparable in terms of success, but none were able to explore drastically different
structures. The research groups acknowledged that standard search methods for comparing LSTM cell
to alternatives were restricted by the enormous space of possible cell structures and were unable to
confidently express a method for choosing an effective cell type without a computationally expensive
search.

The RNN cell choice in the previous paragraph is an example of the extent of choice for a network’s
topology. In the following paragraph, even more variation is presented within the realm of just
recurrent networks. Furthermore, it is often unclear what choices will be effective: while recurrent
networks are often chosen for sequential problems and convolutional networks are chosen for
image-based problems, the recent Convolutional Sequence to Sequence Learning network [15]
counterintuitively found success when they applied a fully convolutional architecture to a classically
sequential machine translation challenge. Such a poorly understood landscape of effective network
structures indicates that automatic methods for deciding network structure would be essentially
useful.

Beyond relatively ‘simple’ RNN cell modifications such as LSTMs or GRUs [35, 9], Olah and Carter
[66] have identified more than a dozen recently successful ‘augmented RNNs’ that contain attentional
components, differentiable data structures, or other significant parts not typical to recurrent neural
networks [45, 23, 106, 50, 43, 65, 75, 24]. They also note that any or all of the augmentations
can hypothetically be combined – a consequence of which is a combinatorial explosion of possible
topologies; the models they mention in the study are merely ‘points in a broader space’. So, not only
are evolutionary methods a potentially helpful way to speed up novel design, but they may become
essential as automated ways to select components from the fast-growing, diverse, and highly effective
possible RNN augmentations. Indeed, Greve et. al. [26] have demonstrated that an evolutionary
version of the Neural Turing Machine (NTM) augmented-RNN architecture [23], evolved using
NEAT, exhibits more generalization and has a significantly smaller architecture than NTM, and is able
to solve unprecedented tasks. Evolved NTMs have also been demonstrated as capable of performing
one-shot reinforcement learning without catastrophic interference [57]. Memory networks [101],
or networks augmented with a persistent read-write memory module, are a recent introduction to
the modern neural network repertoire that are quickly being addressed as a target for demonstrating
advanced learning techniques such as one-shot learning [81], meta learning [80], and low-resource
challenges [72]. In a paper of the same flavor [48], researchers designed a new GRU cell with
memory but then subjected it to neuroevolution with NEAT. These researchers demonstrate that
when a problem has rearrangeable components or a naturally decompositional structure, applying
evolutionary techniques can be simple, can make the network effective and competitive, and can
fit naturally as a standard neural network training technique (i.e., as a preprocessing strategy as in
[48]). Also, by training their networks exclusively with neuroevolution, not backpropogation, they
demonstrate that neuroevolution can be fully a viable learning rule.

Olah and Carter [66] also mention that attentional and memory mechanisms are inefficient, since
they make their approximate selections by considering all selections (through a softmax function).
Methods for hard-selecting attentional subjects, such as an evolutionary prior selection, would be an
enormous computational improvement.

Among the first to apply neuroevolution to successfully improve on the LSTM cell are Bayer et al. [3],
who used NEAT. Since then, Miikkulainen et. al. [60] have identified that NEAT-like evolutionary
algorithms applied to recurrent networks can be advantageous both in constructing novel recurrent
cells related to LSTMs as in [3, 44] as well as in deciding how to arrange static LSTM-like cells [60].
They further demonstrate that much of the current success in recent LSTM research due to successful
architectures can be improved on using NEAT cousin, CoDeepNEAT. In particular, CoDeepNEAT
is demonstrated to improve upon the hand-designed current best solutions to Image Captioning
problems [60, 46].

5.3 Reinforcement Learning

Reinforcement learning is a set of techniques for learning decisions in a state-action space with
rewards. It is fitting that evolutionary techniques originally found success in this field, and are now
making a comeback through comparisons to reinforcement learning in popular work published by
OpenAI. These techniques find particular relevance here due to the large space for optimization, or in
cases where there has been a lack of success in applying gradient-based methods for learning.
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For a good overview of older work on reinforcement and neuroevolution, we recommend that the
reader consult Whiteson [102], which covers this work in much greater depth. In particular, we would
like to highlight Heidrich-Meisner and Igel [34], which explored these types of strategies in 2009.
Their work used CMA-ES for policy learning on the pole-balancing problem.

The topic of reinforcement learning has rich intersections with convolutional neural networks and
recurrent neural networks. One example of this is Koutník et al. [49], which developed an unsuper-
vised learning approach based on CNNs for a racing car simulation problem. Another example is the
use of the previously discussed "Evolving Neural Turing Machines" approach in Lüders et al. [57]
for one-shot learning in a reinforcement learning context.

In 2017, OpenAI published their argument that evolution strategies (ES) could serve as a scalable
alternative to reinforcement learning. In this case, scalable means parallelizable, and comparable
results were achieved on the MuJoCo and Atari problems in reinforcement learning. [79]

Fernando et al. [14] propose PathNet, a modular neural network architecture that helps in learning how
to reuse parts of neural networks for other problems, in a step toward general artificial intelligence.
Pathways undergo tournament selection, and transfer learning is used to speed up the evolution
process. This work demonstrates interesting results on reinforcement learning benchmarks, and the
authors intend for PathNet to mimic the function of basal ganglia in the human brain.

Veniat and Denoyer [96] introduced the idea of Budgeted Super Networks that bound inference time
for applications that require running models on mobile devices. Reinforcement learning methods
are used to optimize for the budget of time efficiency. While evolutionary methods are not used in
this work, the idea of using computational budget as a fitness objective would be useful in pursuing
similar research that leverages evolutionary techniques for goals beyond just improved accuracy.

Zimmer and Doncieux [107] proposed a way to kickstart the reinforcement learning process with
evolutionary methods. Much like with transfer learning, it is often better to start from a good state
rather than a random state. This method was applied to several robotics problems using Q-learning.

5.4 Higher-Order Networks

A higher-order network is a network that has layers whose inputs interact beyond just a linear
weighted sum. An example second-order network layer may output weights that are the cross product
of the input vector with itself. These were first identified as Sigma-Pi networks [78], called so because
they take sums over monomials over elements of the input vector, and they have since been used but
often in different names: isolated LSTM cells are third-order in the previous state and second-order
in the input, and GRU cells are second-order in both input and state. In fact, it has been demonstrated
that second-order plain recurrent cells comparable to the LSTM precisely learn finite state automata
[17, 68, 22]. Feedforward neural networks are inherently first-order: there are only linear operations
on the inputs, and the elementwise nonlinearities do not increase this. High-order artificial networks
have been praised for their flexibility and speed at solving non-linear problems [63]. Plain softmax-
attentional modulation of weights, such as the read operation or the write operation in Neural Turing
Machines [23], or equivalently, gating units [40], define a second-order quadratic interaction; Olah
and Carter [66] identify numerous such successful modern attentional networks (NTMs specifically)
that are fundamentally higher-order applications. The ILSVRC 2014 champion, GoogLeNet [94],
sources much of its success to the repeated second-order module; the ILSVRC 2015 champion,
ResNet [32], is fundamentally just a deep series of second-order layers. In a biological system, N
competitively-inhibiting neurons form an N -order network. Higher-order networks capture a broad
class of interactions, and though they may be a strange way of describing some kinds of networks,
they are pervasive in modern neural network research and application. Higher-order networks have
been identified and studied in theoretical [39, 82, 83], neuroscientific [7, 27], and computational
[67, 99] contexts. Overall, this vein of exploration is rather untouched.

Backpropagated gradient descent, the standard tool for training networks, works decreasingly well as
the order of the function increases due to a prevalence of local minima that inhibit the effectiveness of
local optimization [39]. Instead, global optimization methods, especially particle swarm optimization,
genetic algorithms, and architecture pruning, are viable and suggested alternatives [63, 64]. Since
numerous modern successful architectures, such as the LSTM or networks with attentional compo-
nents, incorporate higher order components, it is fitting to discuss the application of evolutionary
approaches as improved optimization methods over gradient descent. Orthogonally, if a researcher
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were to decide to use gradient descent, Nayak et al. [64] notes that higher-order networks can alleviate
the diminishing learning signal problem [4].

In addition to the utility of high-order layers, cognitive neuroscientific work has supported the idea
that biological neurons can and do modulate each other, and that such capabilities may even be critical
to synaptic learning [88]. Since many advances in neural network have found initial inspiration in
biological analogues [76, 36, 53], it is sensible that the idea of neuromodulation may be useful in
future work.

Initial work on high-order networks. There have been several high-order models intentionally
designed as such. Functional link networks [16, 37, 109], pi-sigma networks [84], sigma-pi networks
[78], ridge polynomial networks [85], and second-order networks [61] have all been demonstrated to
have some success. Rovithakis et al. [77] and Sierra et al. [87] have applied specifically evolutionary
algorithms to train functional link networks with mild success [70, 71, 69].

Some other work [97, 98] has demonstrated that architecture optimization is an effective way to
make high-order networks effective and practical, and related work [103, 98] has demonstrated that
genetic algorithms are an effective method for conducting this architecture selection. In one case
[63], genetic algorithms were the most effective at learning a high-order network structure, due in
part to the infinite number of high-order network layers.

In Miikkulainen et al. [60], a second-order network is discovered as the best model for CIFAR-10
using CoDeepNEAT. It identified the utility of identifying and repeating a fixed-structured module,
as in [32, 94]. Examples such as these suggest further analysis on the order of a network may be
worthwhile.

Recent advanced work additionally credits work in high-order networks as worthwhile. Reed and
de Freitas [75] credit past work on high-order and second-order networks as important for their own
work in using part of a network to modulate another part [78, 93].

Progress has been made in reconciling evolutionary and gradient-based techniques as well:
Epitropakis et al. [12] discuss an experiment in which the most successful method for training
Pi-Sigma networks was hybrid evolutionary and differentiable.

5.5 Other Networks

Researchers have used evolutionary principles in designing ‘meta networks’, networks that design
target networks for specific tasks. The HyperNetwork and the HyperLSTM [29] are networks
evolved using HyperNEAT [91] to choose initial weights for a task convolutional or LSTM network
respectively, and they are competitive with state-of-the-art models while using fewer parameters.

Jain et. al. [41] have shown that evolutionary techniques can also improve competitive networks, a
prospect that is appealing to the very new, promising Generative Adversarial Networks [52, 21].

Loshchilov et al. [56] presented the Limited-Memory Matrix Adaptation Evolution Strategy (LM-
MA-ES) and applied this method to generating adversarial inputs to neural networks.

Gruau [27] presented a method for encoding and creating modular neural networks using genetic
algorithms.

Baluja [2] presented an early solution to autonomous driving that applied evolutionary techniques to
designing a network. In the study, they found that evolutionary approaches were more effective also
at training the weights than backpropagation. It cited the fact that evolution approaches optimized
globally and thus avoided settling at local minima, an issue common to backpropagation, though
backpropagation learned more quickly.

Cangelosi et al. [8] performed preliminary work on the dynamics of evolutionary learning applied to
neural networks; results indicate that on simple evolutionary processes, early decisions can persist
well into later models.

6 Discussion & Conclusion

Recent advances in the power and availability of deep learning hardware help to explain the resurgence
in popularity of these computationally-expensive methods for neural network training and design.
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As cloud providers offer more GPU support, and the cost of computation decreases, one would
expect these methods to become more widely used in research. New platforms are emerging that will
increase access to distributed training. In particular, Sentient Technologies worked with researchers
to leverage their DarkCycle platform for idle computational resources. [60] Additionally, the Golem
Project is building a decentralized platform for utilizing global computational resources, powered by
smart contracts, the Ethereum blockchain, [104] and their own network token. [95]

While most work has focused on accuracy of the resulting model as the measure of fitness, new
research could explore alternative measures of fitness that would help solve other problems in deep
learning beyond just maximizing performance on a given learning task.

Several papers mentioned how neuroevolution resulted in smaller models. These techniques could
explicitly use parameter count and inference time as a fitness measure, yielding new results for the
field of model compression. For this direction of research, the space of possible mutations could be
expanded to include compression strategies such as pruning, quantization, and Huffman coding. [30]

As another example, neuroevolution could result in more robust defenses against adversarial attacks
in machine learning. Just as the body evolves new defenses to harmful bacteria, neural networks
could evolve robustness to adversaries, in a defense through diversity approach. [59]

It would also be interesting to study the expressivity of neural networks over the course of evolution
by these methods, using the notions developed by Raghu et al. [73] in their work that centered
on trajectory length. Exploring this direction could help yield a better understanding of which
evolutionary techniques work best for neuroevolution and how best to parameterize these techniques.
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Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing
using a neural network with dynamic external memory. Nature, 538(7626):471–476, 2016.

[25] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm: A
search space odyssey. IEEE transactions on neural networks and learning systems, 2016.

[26] Rasmus Boll Greve, Emil Juul Jacobsen, and Sebastian Risi. Evolving neural turing machines for reward-
based learning. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pages
117–124. ACM, 2016.

[27] Frederic Gruau. Genetic synthesis of modular neural networks. In Stephanie Forrest, editor, Proceedings
of the 5th International Conference on Genetic Algorithms, ICGA-93, pages 318–325, University of
Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann. URL http://www.cs.ucl.ac.
uk/staff/W.Langdon/ftp/papers/icga93_gruau.pdf.

[28] Frédéric Gruau, Darrell Whitley, and Larry Pyeatt. A comparison between cellular encoding and
direct encoding for genetic neural networks. In Proceedings of the 1st annual conference on genetic
programming, pages 81–89. MIT Press, 1996.

[29] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016. URL
http://arxiv.org/abs/1609.09106.

[30] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

10

http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1410.5401
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/icga93_gruau.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/icga93_gruau.pdf
http://arxiv.org/abs/1609.09106


[31] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[33] Joel Heck and Fathi M. Salem. Simplified minimal gated unit variations for recurrent neural networks.
CoRR, abs/1701.03452, 2017. URL http://arxiv.org/abs/1701.03452.

[34] Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic reinforcement
learning. Journal of Algorithms, 64(4):152–168, 2009.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[36] David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture of monkey striate
cortex. The Journal of physiology, 195(1):215–243, 1968.

[37] A Hussain, JJ Soraghan, and TS Durbani. A new neural network for nonlinear time-series modelling.
NeuroVest Journal, pages 16–26, 1997.

[38] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization, pages
507–523. Springer, 2011.

[39] Adiel Ismail. Training and optimization of product unit neural networks. PhD thesis, 2005.

[40] R Jacobs and M Jordan. A competitive modular connectionist architecture. Network, 2:Y2, 1990.

[41] Ashish Jain, Anand Subramoney, and Risto Miikulainen. Task decomposition with neuroevolution in
extended predator-prey domain. Artificial Life, 13:341–348, 2012.

[42] Justin Johnson, Andrej Karpathy, and Fei-Fei Li. Densecap: Fully convolutional localization networks
for dense captioning. CoRR, abs/1511.07571, 2015. URL http://arxiv.org/abs/1511.07571.

[43] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.
In Advances in neural information processing systems, pages 190–198, 2015.

[44] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 2342–2350, 2015.

[45] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. CoRR, abs/1511.08228, 2015. URL
http://arxiv.org/abs/1511.08228.

[46] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[47] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. CS 231N: Convolutional neural networks for visual
recognition. http://cs231n.github.io/, 2017. Accessed: 2017-6-3.

[48] Shauharda Khadka, Jen Jen Chung, and Kagan Tumer. Evolving memory-augmented neural architecture
for deep memory problems. In Proceedings of the Genetic and Evolutionary Computation Conference
2017, 2017. To appear.

[49] Jan Koutník, Jürgen Schmidhuber, and Faustino Gomez. Evolving deep unsupervised convolutional
networks for vision-based reinforcement learning. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, pages 541–548. ACM, 2014.

[50] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. CoRR,
abs/1511.06392, 2015. URL http://arxiv.org/abs/1511.06392.

[51] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th
international conference on Machine learning, pages 473–480. ACM, 2007.

[52] Yann LeCun. Predictive learning. URL https://drive.google.com/file/d/
0BxKBnD5y2M8NREZod0tVdW5FLTQ/view. NIPS 2016 Keynote Presentation, 2016.

11

http://arxiv.org/abs/1701.03452
http://arxiv.org/abs/1511.07571
http://arxiv.org/abs/1511.08228
http://cs231n.github.io/
http://arxiv.org/abs/1511.06392
https://drive.google.com/file/d/0BxKBnD5y2M8NREZod0tVdW5FLTQ/view
https://drive.google.com/file/d/0BxKBnD5y2M8NREZod0tVdW5FLTQ/view


[53] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[54] J. Lehman and R. Miikkulainen. Neuroevolution. Scholarpedia, 8(6):30977, 2013. doi: 10.4249/
scholarpedia.30977. revision #133684.

[55] Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks.
arXiv preprint arXiv:1604.07269, 2016.

[56] Ilya Loshchilov, Tobias Glasmachers, and Hans-Georg Beyer. Limited-memory matrix adaptation for
large scale black-box optimization. arXiv preprint arXiv:1705.06693, 2017.

[57] Benno Lüders, Mikkel Schläger, and Sebastian Risi. Continual learning through evolvable neural turing
machines. In NIPS 2016 Workshop on Continual Learning and Deep Networks (CLDL 2016), 2016.

[58] V. Maniezzo. Genetic evolution of the topology and weight distribution of neural networks. IEEE
Transactions on Neural Networks, 5(1):39–53, Jan 1994. ISSN 1045-9227. doi: 10.1109/72.265959.

[59] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. arXiv
preprint arXiv:1705.09064, 2017.

[60] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala Raju,
Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving deep neural networks. arXiv preprint
arXiv:1703.00548, 2017.

[61] Srdjan Milenkovic, Zoran Obradovic, and Vanco Litovski. Annealing based dynamic learning in second-
order neural networks. In Neural Networks, 1996., IEEE International Conference on, volume 1, pages
458–463. IEEE, 1996.

[62] Martin Mundt, Tobias Weis, Kishore Konda, and Visvanathan Ramesh. Building effective deep neural
network architectures one feature at a time. arXiv preprint arXiv:1705.06778, 2017.

[63] Janmenjoy Nayak, Bighnaraj Naik, and Himansu Sekhar Behera. Solving nonlinear classification
problems with black hole optimisation and higher order jordan pi-sigma neural network: a novel approach.
International Journal of Computational Systems Engineering, 2(4):236–251, 2016.

[64] Janmenjoy Nayak, Bighnaraj Naik, and HS Behera. A novel nature inspired firefly algorithm with higher
order neural network: Performance analysis. Engineering Science and Technology, an International
Journal, 19(1):197–211, 2016.

[65] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs with
gradient descent. CoRR, abs/1511.04834, 2015. URL http://arxiv.org/abs/1511.04834.

[66] Chris Olah and Shan Carter. Attention and augmented recurrent neural networks. Distill, 1(9):e1, 2016.

[67] Christian W Omlin. Training second-order recurrent neural networks using hints. 2014.

[68] Christian W Omlin and C Lee Giles. Constructing deterministic finite-state automata in recurrent neural
networks. Journal of the ACM (JACM), 43(6):937–972, 1996.

[69] Yoh-Han Pao, Stephen M Phillips, and Dejan J Sobajic. Neural-net computing and the intelligent control
of systems. International Journal of Control, 56(2):263–289, 1992.

[70] Jagdish C Patra and Ranendra N Pal. A functional link artificial neural network for adaptive channel
equalization. Signal Processing, 43(2):181–195, 1995.

[71] Jagdish Chandra Patra, Ranendal N Pal, BN Chatterji, and Ganapati Panda. Identification of nonlinear
dynamic systems using functional link artificial neural networks. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 29(2):254–262, 1999.

[72] Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes. In
Advances in Neural Information Processing Systems, pages 3621–3629, 2016.

[73] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive
power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016.

[74] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Quoc Le, and Alex
Kurakin. Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041, 2017.

12

http://arxiv.org/abs/1511.04834


[75] Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. CoRR, abs/1511.06279, 2015.
URL http://arxiv.org/abs/1511.06279.

[76] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

[77] George A Rovithakis, M Maniadakis, and M Zervakis. A hybrid neural network/genetic algorithm
approach to optimizing feature extraction for signal classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 34(1):695–703, 2004.

[78] David E Rumelhart, James L McClelland, PDP Research Group, et al. Parallel distributed processing, vol.
1&2. Cambridge, MA: The MIT Press, 1986.

[79] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[80] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learning,
pages 1842–1850, 2016.

[81] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy P. Lillicrap. One-
shot learning with memory-augmented neural networks. CoRR, abs/1605.06065, 2016. URL http:
//arxiv.org/abs/1605.06065.

[82] Michael Schmitt. Vc dimension bounds for higher-order neurons. 1999.

[83] Michael Schmitt. Vc dimension bounds for product unit networks. In Neural Networks, 2000. IJCNN
2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, volume 4, pages 165–170.
IEEE, 2000.

[84] Yoan Shin and Joydeep Ghosh. The pi-sigma network: An efficient higher-order neural network for pattern
classification and function approximation. In Neural Networks, 1991., IJCNN-91-Seattle International
Joint Conference on, volume 1, pages 13–18. IEEE, 1991.

[85] Yoan Shin and Joydeep Ghosh. Ridge polynomial networks. IEEE Transactions on neural networks, 6(3):
610–622, 1995.

[86] Nils T Siebel and Gerald Sommer. Evolutionary reinforcement learning of artificial neural networks.
International Journal of Hybrid Intelligent Systems, 4(3):171–183, 2007.

[87] Alejandro Sierra, Jose A. Macias, and F Corbacho. Evolution of functional link networks. IEEE
Transactions on Evolutionary Computation, 5(1):54–65, 2001.

[88] Andrea Soltoggio, John A Bullinaria, Claudio Mattiussi, Peter Dürr, and Dario Floreano. Evolutionary
advantages of neuromodulated plasticity in dynamic, reward-based scenarios. In Proceedings of the 11th
International Conference on Artificial Life (Alife XI), number LIS-CONF-2008-012, pages 569–576. MIT
Press, 2008.

[89] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

[90] Kenneth O Stanley and Risto Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):
93–130, 2003.

[91] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolving
large-scale neural networks. Artificial life, 15(2):185–212, 2009.

[92] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach to
designing convolutional neural network architectures. arXiv preprint arXiv:1704.00764, 2017.

[93] Ilya Sutskever and Geoffrey E Hinton. Using matrices to model symbolic relationship. In Advances in
Neural Information Processing Systems, pages 1593–1600, 2009.

[94] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[95] Golem Team. The golem project: Crowdfunding whitepaper. https://golem.network/doc/
Golemwhitepaper.pdf. Accessed: 2017-06-06.

13

http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1605.06065
https://golem.network/doc/Golemwhitepaper.pdf
https://golem.network/doc/Golemwhitepaper.pdf


[96] Tom Veniat and Ludovic Denoyer. Learning time-efficient deep architectures with budgeted super
networks. arXiv preprint arXiv:1706.00046, 2017.

[97] Li Wangchao, Wang Yongbin, Li Wenjing, Zhang Jie, and Jinyan Li. Sparselized higher-order neural
network and its pruning algorithm. In 1998 IEEE International Joint Conference on Neural Networks
Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227), volume 1,
pages 359–362 vol.1, May 1998. doi: 10.1109/IJCNN.1998.682292.

[98] Michael J Watts and Nikola K Kasabov. Genetic algorithms for the design of fuzzy neural networks. In
ICONIP, pages 793–796, 1998.

[99] Cornelius Weber and Stefan Wermter. A self-organizing map of sigma–pi units. Neurocomputing, 70(13):
2552–2560, 2007.

[100] Karsten Weicker. Evolutionary algorithms and dynamic optimization problems. Der Andere Verlag
Berlin, 2003.

[101] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR, abs/1410.3916, 2014. URL
http://arxiv.org/abs/1410.3916.

[102] Shimon Whiteson. Evolutionary computation for reinforcement learning. In Reinforcement Learning,
pages 325–355. Springer, 2012.

[103] L Darrell Whitley and Christopher Bogart. Evolution of Connectivity: Pruning Neural Networks Using
Genetic Algorithms. Colorado State University, Department of Computer Science, 1989.

[104] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow
Paper, 151, 2014.

[105] Xin Yao and Yong Liu. A new evolutionary system for evolving artificial neural networks. IEEE
transactions on neural networks, 8(3):694–713, 1997.

[106] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. CoRR,
abs/1505.00521, 2015. URL http://arxiv.org/abs/1505.00521.

[107] Matthieu Zimmer and Stephane Doncieux. Bootstrapping q-learning for robotics from neuro-evolution
results. IEEE Transactions on Cognitive and Developmental Systems, 2017.

[108] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[109] Jacek M Zurada. Introduction to artificial neural systems, volume 8. West St. Paul, 1992.

14

http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1505.00521

	Introduction
	Training Neural Networks
	Evolutionary Algorithms
	Neuroevolution
	Evolving Neural Architectures
	Convolutional Neural Networks
	Recurrent Neural Networks
	Reinforcement Learning
	Higher-Order Networks
	Other Networks

	Discussion & Conclusion

