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Introduction In statistical and computational learning theory, there is the general question

of assigning complexity to models and datasets, both in terms of what metric to use and in terms

of how to tractably do the assigning. Well-known solutions are Information Entropy H from

Shannon, Minimum Description Length, Bayesian and Akaike Information Criterions, e↵ective

number of parameters ✓ for parametric models, and Vapnik-Chervonenkis (VC) dimension. Each

of these have their e↵ective uses, but each of them are limited in two realms:

• Each is only capable of examining entire systems as indivisible units; this idea is often

unintuitive, since models are often designed and understood as complex objects, exemplified

by Task Three in Figure 1. This signals the primary motivation for this project: to develop

a version of complexity that decomposes naturally as tasks and models decompose.

• Each assigns a single ordinal number to objects: H(X) 7! [0, 1], V C(X) 2 N, etc. While

this is e↵ective for comparing two objects and each statistic is designed to be used in

theoretically-useful settings, these lack an ability to intuitively categorize, in the same

setting, the below Tasks One and Two in Figure 1. Some of the methods listed below,

such as the plausibility structure, generalize this capability, yielding more understandable

tools for decomposed modelings.

This project makes an attempt to resolve this issue in a restricted domain. Please note that

for the sake of brevity and clarity, many inessential formal definitions and proofs are omitted;

please consult the references for completions.

1 Overview

This project examines VC dimension as a metric and proposes methods to generalize or augment

it for the purpose of (1) decomposable structures and (2) more flexible interpretation. Using

logic and notions of probability, I develop several ways to realize this task.
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Figure 1: All binary tasks on two atoms, which we call class BIN . Let Task One be a linearly

seperable dataset in R2, such as all the tasks below besides those with ID 6 or ID 9. Task Two

is a binary XOR task in R2, such as tasks ID 6 or ID 9 below. Task Three is a task in R4 in

which all points in the first two dimensions are linearly seperable and the points in the last two

dimensions is a binary XOR task, such as direct product (4)⇥ (6).
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VC Dimension Definition While VC is usually defined on families of functions, it will

be more convenient for us to work in a set-theoretic framework, according to [1]. Let us define

NA(D) = |{A \ D : A 2 A}| be the total number of subsets that can be ‘picked out’ by

elements A of A on a finite set of x, {x} = D. Define the nth shatter coe�cient of family A as

r(A, n) = maxD NA(D); note r(A, n)  2n, 8n. If r(A, n) = 2n, then there exists a set of points

D such that NA(D) = 2n, which we call A shatters D. Let V C(A) be the largest k 2 N such

that r(A, k) = 2k, which can be interpreted as the largest number of points that can be shattered

by A. This all a standard definition of VC.

(Note that VC is a unary metric on a model class, implicitly defining which tasks it can solve,

namely those with VC(class) number of points. However, since this project is concerned with

the class-task relative fitness as the standard for expressiveness, I consider the corresponding

mapped binary shatter metric that takes a class and a task and returns whether the VC-power

of the class satisfies the VC-requirement of the task.)

Informally, figure (2) is the canonical VC example: linear classifiers in R2 with bias terms

(LC2 ) can shatter up to three points in any orientation with any classification; hence, model class

LC2 has VC dimension at least 3. However, there is no classifier in LC2 that can completely

classify any four points a vector space – that is, versions of ⌦ and $ are not shattered; hence,

V C(LC2 ) < 4.

One of the simplest motivations for this project is that LC2 can shatter most of any 4 points

but not all – specifically, given a uniform distribution of four points (or two binary atoms) and all

logical assignments on those atoms, the probability of the existence of a shattering is 14
16 = 0.875.

It seems intuitively harsh to assign r(LC2 , 4) = ? = 0. As the number of points and the size of
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Figure 2: Linear classifiers in R2 can shatter any 3 points (a) but not all 4 points (b).

the classifiers grow, the proportion of points and arrangements that linear classifiers can shatter

grows exponentially but the shattering dimension is bounded above linearly due to generalized

XOR examples. One of the motivating points of this project is to develop a framework in which

a notion of partial shattering is founded. Specifically, in the application of fitted models and

data-driven classification tasks, it makes sense not to evaluate ? on A if the likelihood of its

incapacity is exceedingly small on E[D].

The primary mode of reasoning, which aligns with our coursework, is the usage of default

reasoning as an in-a-normal-world approach to reimagining VC dimension. Default reasoning

makes sense both semantically and procedurally, since it lends to probabilistic and in-limit inter-

pretations. The following sections outline various methods for developing and using this so-called

default-VC.

• The first section Extremal Statistics outlines the overall problem and provides the strictest

but most exact encoding of default-VC, using probabilities on logic. It both preserves the

idea of typically-shatters and implicitly lends to decomposability. A similar system called

✏-entailment by Pearl and Adams is presented.

• The next section PAC-bound introduces probabilistic approximation to the strict ✏-entailment.

via a reduction of the default-VC to a PAC-satisfying objective. An example shows its ver-

satility.

• Next is a method that measures disjoint covering sets as a di↵erent kind of method for

determining model su�ciency given a task.

• After that is a plausibility structure, a probability generalization with well-suited proper-
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ties.

• And finally, a convergent sequence strategy.

Some definitions: Let us define shatter function sA(D) (analogous to r above) to be a

truth valuation indicating whether A shatters D or not for set of sets (family of functions, class

of models) A and an ordered set (partially or fully observed data sets, a single task, a set of

tasks, a vector, a pair (x,y)) called D. s maps to [0,1] ⌘ [>,?]. Further, let us extend D ! D

be an ordered countably infinite set (infinite vector) and A be a simple set or specific model in

A : A 2 A. In this project, we consider the rough terminology: x 2 D ✓ D, where x is a single

point, D is a sample, and D is the unknown target task or true distribution; and A 2 A ✓ MA,

where A is a single unparameterized or parameterized model, A is a ‘model class’ such as LC2 ,

and MA is a collection of model classes, such as {LCn} for n = 1..N . Note that a ‘task’ x can

have distinct observation values and target values, such that an appropriate model finds an f

such that f(xi) = xo and x = (xi, xo). However, this structure can be isomorphically mapped to

a point in a single simple variable space: for example, the original VC task that considers subsets

of points in Rn can be remapped to Rn ⇥ I where I is an indicator of set inclusion, I = {0, 1}.
Likewise, while a ‘true distribution’ D might be pairs of measure values assigned to events, the

measure can be considered as an appended dimension on the event space; hence, we can consider

any task x 2 D as a simple, ‘atomic’ value or vector. This is, in part, the reason we can consider

a set-theoretic definition of VC dimension instead of a functional one.

2 Extremal Statistics

This is perhaps the most direct method for developing a fuzzy VC. In the words of Pearl, [8],

this is a “conservative core”.Essentially, using results in default logic, we develop a reasonable

interpretation of VC in probabilistic terms derived from logic.

Preliminaries Define ✏s as follows. We can say that P( |�) > 1 � ✏ i↵ we can know a

finite collection � of system-P-defined default statements {x |⇠ y}t (ie, a sequence of length

t of default statements xt |⇠ yt), such that the a collected assertion for all ✏ there is � for

which P(yt|xt) > 1 � � implies P( |�) > 1 � ✏, then {x |⇠ y}t ✏s � |⇠  . (Equivalently,

define ✏s as: given P( |�) > 1 � ✏, {x |⇠ y}t ✏s � |⇠  as t ! 1 if {x |⇠ y}t can verify

P( |�) > 1 � ✏ almost surely.) That is, if we are assured that any sequence {x |⇠ y}t would
s-entail � |⇠  by an arbitrary bound for every P, then > ✏s � |⇠  . This we have seen in

class. Let P( |�) ⌘ P(s�( )), ie the probability that � shatters  .

Now, if we can assert such a claim for all P, then we can demonstrate that a sequence of

selected models A ✓ MA of a collection of model classes (such as: MA = all linear classifiers
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in Rm and A = LC2 ). We are attempting to find a collection of models that will almost

surely shatter D a true distribution by considering samples Dt ⇢ D: that is, we can talk about

P(D|MA) given assertions At |⇠ Dt.

Using probabilities on first-order as in lecture using Gaifman’s conditions, we can reduce our

problem to the following which will guarantee over all P: we seek:

1� ✏ < P(8D9A : sA(D)) for D ⇢ D,A ✓ MA (1)

= inf
{D}

P(9A : ^DsA(D)) (2)

= inf
{D}

sup
{A}

P(_{A} ^{D} sA(D)) (3)

is reached using temporary formula with only one free variable ⇠(D) = (9A : sA(D)) and

quantifier identities, over all finite sequences of {D} and {A}.
This is a natural method for defining our goal: we have essentially formulated the task as a

game in which D attempts to minimize and A attempts to maximize the shatter valuation. If

there is always an A that can be found that can shatter any sample D, then we can conclude

sMA(D) ! >. Note that the strictness of this assertion comes with the cost of having to assert

infimums over any D for shattering; alternatively, we can approximate sMA tractably using

PAC-bounds, as discussed in section Entropy Methods. Additionally, this formulation insists on

verifying these sequences over every well-defined P; a resolution is presented below as well.

A point of note is that� ✏s MA |⇠ D with� = {At |⇠ Dt, t 2 0..T} is a fully self-referential
system: any At |⇠ Dt can be itself be s-entailed as �t ✏s At |⇠ Dt, with �t = {Atu |⇠ Dtu,

u = 0..U} for recursion layer 2; {Atuv |⇠ Dtuv, v = 0..V } ✏s Atu |⇠ Dtu et cetera via induction.

In English (informally), a collection of constituent tasks that are independently modeled and

can assert an umbrella task is a fully recursive system. In this setting, standard VC can be

interpreted as one of these systems that was recursed all the way down until D = {x}, |D| = 1 a

single datapoint. The shatter valuation of each lone datapoint was determined by the complete

set of model classes MA, and the infimum/supremum operation enforced binary returns. For

example, D = BIN and MA = LC2 would recurse down to Dt1,...,tr is the unary ‘datapoint’,

one of tasks 0-15 in Figure (1). If Dt1,...,tr = {^}, for example, LC2

t1,...,tr == LC2 would shatter

^ and return 1 up the stack to D. However, recursion Dt1,...,tr = {⌦} would not be shattered by

LC2 and would return 0; up at the root, the infimum would send the entire valuation to 0.

In default-VC, the desire for decomposability is pleased by natural recursion and division of

tasks, but it often makes sense to stop recursion early at some point if a value beyond standard

binary VC shatter would be helpful.

For clarity, The following is an example of an approximate default-VC. Consider D = BIN

and MA = LC2 . To determine the probability that LC2 would shatter an arbitrary binary task
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on 2 variables, sample a x task (one of the 16 binary tasks) M times, determining if LC2 shatters

x, and taking the average ofM runs. In the limit asM ! 1, the probability of s would approach

0.875 indeed. This process could include one recursion: first, sort the task by the value of atom

A (which has P(A = ?) = P(A = >) = 0.5 as a prior), then multiply that by the probability of

s given the rest of the sample, the value of atom B. This is loosely: sMA(s(DB|A) ⇤ P(A)).
An important point is that the above definition of probability on first-order logic statements

is only valid if it can be asserted for all P. This, however, is easier to satisfy that would be

immediately apparent; see the section measures of disjoint covering sets.

3 PAC-bound

Another useful tool that utilizes entropy methods is the probably approximately correct (PAC)

bound [9,11]. This comes particularly in handy when our candidate models Â as above are fit to

surpass a fixed but substantive threshold of error. Consider:

P({D : KL(sMA(D)||sMA(D))  ⌘}) � 1� ✏

using approximation parameter ⌘ > 0, ✏ > 0 as a confidence parameter, KL as the Kullback-

Leibler divergence or relative entropy, and s as defined in section Extremal Statistics. If P satisfies

this bound, it is called PAC and there is a theory of results that support it as a qualification for

statistical learnability [11]. If this P can be verified over a finite sample of {D} of size n, using

arbitrary n, then our original task is asserted. For modeling tasks, this can often be asserted if

the error individual models or the expected error over models can be found.

Applied to our problem, let us maintain s 7! {?,>} and define s(D) := 1
d

P
D s(D) is the

sample mean of shatters in [0,1]. Let d := |{D}| < N. Then, using Cherno↵’s bound:

P̂{D}⇠D(s(D) 6= >) = PD(s̄(D)  1� ✏)  e�dO(✏2) (4)

under fixed ✏ > 0, P̂ an unbiased estimate or an estimate as d ! 1, and all samples D ⇠ D

iid. This bound can be interpreted as: the probability that a collection of learned models (with

known bounded shatterings) would overestimate the overall shattering of the dataset D decreases

exponentially fast in the number of samples modeled d. That is, the shatter valuation s built

for our question MA |⇠ D using only finite samples satisfies PAC learnability, around which

there is substantial literature. A particularly satisfying result from [10] explains that tasks that

can be modeled with decision trees over k-ary CNF clauses on n atoms (n > k) (which we call

the model class kDT ) are PAC-bound preserving. Additionally, kDT is distribution-free, hence,

approximately e↵ective for all D. That is, kDT is a class of models that can preserve our s

relationship on independently-modeled data samples D ⇠ D; further, the fact that kDT is easily

boostable [2] lends to implementational tractability.
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What this section shows is that adding the probabilistic statistic of (relative) entropy allows

us to operate uncertainly. Extremal statistics gave us a universal ‘game’ in which we reason

about first order formulas on s, and it used infimums and supremums on sampled fittings of

models to derive universal declarations about the true task. The strategy in this section instead

uses the average s over the sampled fits instead of inf/sup, and such an interpretation lends to

a system in which we can assert global statistical bounds – but without the strict assurance

that extremal statistics yields. Additionally, PAC works under the assumptions of iid, which

extremal statistics does not: that is, when PAC is implemented, the target task is no longer

further decomposable.

✏-entailment Pearl in [8] describes our Extremal Statistics scheme as the ‘conservative

core’ of probabilistic default logic, called ✏-entailment using the standard system-P default |⇠
(and attributes the original conception to Adams). [15] shows that ✏-entailment is equivalent to

system-P as a default logic system. Notably, he formalizes this version under fixed distributions

that preserve P(y|x) � 1 � ✏ for x |⇠ y 2 �: only these P are the ones which must satisfy

P( |�) = 1 � O(✏). Because this aligns with our above PAC results, we can confidently say

that PAC well-represents the system-P default declarations. What’s significant is that, as in

CS 257 lecture slides on 2-14-17, slide 21 [3], the system-P semantics on default statements

can be used to derive exact relationships between ✏ and �. Generalized, this means that given

confidence requirements for P(sMA(D)) > 1 � ✏, we can determine exact requisite probabilities

on the decomposed partitions, P(sA(D)) > 1� �. According to [17], we can often conclude that

� = ✏
|D| is su�cient.

This supports how our above extremal statistics can be demonstrated as consistent with

default tenets: given � := ✏/|D|, the system-P rules of AND and OR deduces, for arbitrary

formula:
X⇤ |⇠ Y ⇤

( _
x2X

x) |⇠ ( ^
y2Y

y)

which is sensible if we consider all x1, x2, y1, y2 independent from each other as not intersecting.

This observation assists in understanding why ordinal P is somewhat limited where y are logical

covers of Y ⇤ (ie, Y ◆ Y ⇤) and X � X⇤. The ability to apply system-P semantics to default-VC

suggests an abstraction of s from distinct models and tasks to a generalized P-space mapped

from arbitrary objects, a point that is expanded on starting in section Plausibility.

Finally, the ✏-entailment definition lets us present � as a directed network of default state-

ments involving possibly intersecting sets of atoms, a result that preserves natural intuitions of

default statements [8]. Such a representation is natural for both decomposition of the parent

task D into {D} and lends to calculating the relationship between ✏ and �.
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4 Disjoint Cover

The Disjoint Cover strategy of asserting MA |⇠ D considers MA and D as sets whose properties

may be intractable to understand directly but have subsets that are tractably understandable.

One approach begins by considering a target set S (eg, either MA or D) as a bounded set. Let

the Haussdorf measure µ have µ(S) = m, µ(;) = 0, and 0 µ µ(s) µ m for any s ✓ S. That

is, ; ✓ s ✓ S are formally measurable and S is a measure space i↵ µ 7! [0,m] ⇢ R is totally

ordered. Otherwise, µ defines a weakened finite ‘measure’ on a partially ordered space. We will

use this weakened measure in this section and also later in section Plausibility.

If we can assert that S is covered by collection {s}, then µ([s) = µ(S). (If we enforce |{s}|
is countable, or equivalently if countable additivity holds, then a µ 7! [0, 1] is trivially a true

probability measure.) Note that µ([s) = µ(S) is valid because {s} covers S implies we can

develop a disjoint subcover as well, and s need not be open because we specified nothing about

the size of {s}. Under additivity, if {s} is disjoint, then also µ(S) =
P

s µ(s).

Let us consider a µ defined over S = s as a true arbitrary probability measure: µ 7! [0,m:=1],

given with respect to D and MA. With this, we can develop two ways to procedurally verify

MA |⇠ D. Bottom-up If we can take a collection of disjoint {D} that cover D, then � =

{MA |⇠ D} can validate MA |⇠ D if 1 = µ(D) =
P

D µ(D) for some discovered {A}. Top-

down If we take a sequence of covers {D}t such that as t ! 1, µ(Di \ Dj) ! 0 for all i 6= j

and 1 
P

D2{D}t
µ(D), then we can conclude MA |⇠ D.

Both of these strategies use our measure µ as a mapping of subsections of our data space D

to metrics µ that determine how much of the dataspace is covered by any given D. In a sense,

we de-condition our original shatter probability sA(D) from D by multiplying by a µ(D)  1

on our measure defined on MA. The primary reason for this construction is that it permits a

weighting of importance to various portions of our dataspace. Furthermore, while the weighting

can be selected, the original ✏-entailment conception can remain constant. That is:

� ✏s µ(D) > 1� ✏ if
X

D2�

µ(D) > 1� ✏, � disjoint.

This µ can be considered our first example of a system that uses a kind of shatter mapping

of entailment: by sending MA and D or subsets to measures besides straightforward shatter

valuations, we can construct helpful machinery for entailment.

Disjoint set schemes can be realized by the two variants above of bottom-up or top-down via a

partitioning ofD (explicitly or implicitly). The simplest partition is to simply split D into d areas

and model each area piecewise with a known size of �. Alternatively, if D = {x} are interpreted
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as samples of a distribution D, then the strategy holds as the number of samples grows and there

is confidence in the continuity or openness of the D as a true cover of D. Other strategies work,

so long as {D} is a cover of D in the limit. In this context, the usage of asymptotic equipartion

sets of information theory could be helpful in determining the statistical covering capabilities of

a {D} or to

Another method related to plausibility is to use a µ based on MA and D but where S 6= s: µ

could, say, be the number of data points x shattered and D is the total number of data points; µ

could, say, map to other mathematical objects whose metrics are more easily manipulable, such

as a composed mapping of MA to the space of tasks that it can solve in x-space, then a measure

of whether MA � D.

Even more generally, two mappings $(D) and $(MA) can be defined to map both models and

tasks to the same shatter space codomain Y , in which the two comappings are compared using µ

such as a  or overlap metric, etc. An example would be to use a hidden network representation

that takes two of either kind of set and returns one of (,=,�, 6=) to indicate which of two

objects has a higher hidden shatter.

5 Plausibility

The last mapping defined, $, indicates a final general strategy that involves mappings of models

and tasks to new spaces. First, there are two main motivating points that the above methods

are not entirely e↵ective at:

• From [14] we have the lemma: MA |⇠ MB yields the same principles as MA ^ MB.

This informally means that there is a *set space* that categorizes what models do, what

tasks operate in, via cautious monotonicity; the ability to compare two models should be

as natural as comparing a model to a task. This means that default-VC systems should

naturally be able to compare arbitrary model classes and data tasks. However, the above

methods still lack a way to resolve the di↵erences between, for example, the two model

classes LC2 and BINH in terms of what they can shatter. (BINH
�
= the contrived

model class on two binary atoms with nonzero entropy, namely, all tasks except 0 and 15.)

Both BINH and LC2 shatter with probability 0.875, but the fact that they have di↵erent

domains should be modeled.

• Cumulative models as in [14] suggest a hierarchy of su�cient models that is reminiscient of

SRM from Vapnik. That is, there is an ‘optimal’, minimal model that is most reasonable

in a normal world for a task. This aspect of system-P follows with the intuitive idea

of nonmonotonicity is insensible for generalized VC. For example, in VC, the function

9



sin(↵x) has infinite VC dimension because ↵ can always be set arbitrarily low so as to

perfectly capture any binary set with range with codomain [-1,1]. But for reasons such as

generalizability or continuity of parameters given a small change in data sin(↵x) is often

rather not ‘optimal’ and a model with smaller VC dimension may be stronger.

These two situations signal that a metric as simple as s 7! {>,?} or P 7! [0, 1] may be too

simple to well-compare arbitrary models and tasks. Generally, a totally ordered metric may be

too strict. As such, we introduce here Plausibility Structures as in [15] which have an optional

generalization to partial ordering, as well as a number of other properties such as a rather weak

set of constraints on the codomain.

Rather than P 7! [0, 1], define a similar $ 7! C for special a set C that satisfies partial ordered

relationship  and for any c ✓ C, ?  c  > for special symbols ?,>: $(;) = ? and $(C) = >.

It can be shown that $ is equivalent to system-P if:

• For pairwise disjoint X,Y,Z, [$(X [ Y ) > $(Z)] ^ [$(X [ Z) > $(Y )] ! [$(X) > $(Y [ Z)]

• For any X,Y,Z, [$(X \ Y ) > $(X \ Ȳ )] ^ [$(X \ Z) > $(X \ Z̄)] ! [$(X \ Y \ Z) >

$(X \ (Y \ Z))]

• For any X,Y, $(X) = ? ^ $(Y ) = ? ! $(X [ Y ) = ?

Under these (mild) conditions, we can insert our default shatter entailment constructs with $ in

place of P; these conditions even give guidance as to how to decompose or deconstruct D or MA

into smaller pieces for independent computation.

Plausibility is compelling partly because it has numerous convenient properties. This general

structure exactly characterizes our µ measure and is a concrete way to frame the two mappings

$ presented in section Disjoint Cover. From [15], this structure can handle statistical first order

formulations in our context with ease due to its generalized set formulation: so, our query

8D ⇢ D, 9A ⇢ MA : sA(D) fits quite naturally into plausibility without need of Gaifman’s

conditions due to a property that if a formula can be satisfied, in can be done with a finite

structure [15]. The partial ordering allows the sin(↵x) situation to be unordered compared to

more ‘reasonable’ models yet still made less minimal. If MA and D are defined to not occupy

the same space, then there are sMA(D) = $(MA) > $(D) ! P(D|MA,D) � 1 � O(✏). As in

probability, there are analogues to conditioning, independence, and Markovity via notions of set

addition and multiplication [16].

Other properties are: a plausibility structure is fully decomposable under addition (disjoint

union). Plausibility is more intuitively e↵ective at handling irrelevant formulae (due in part to

the capacity for determining optimality structures.
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Generally speaking, plausibility provides a framework that is both more powerful than stan-

dard probability while also preserving properties of probability that are useful for developing

more normal default conceptions of VC shattering dimension. Besides providing a generalized

space for shatter valuations and comparisons, it alternatively provides an entire nearly-arbitrary

mapping space in which to compare sets that preserves probabilistic concepts (and, therefore,

roughly default concepts) which were demonstrated as useful for VC.

6 Sequences

Finally, a very di↵erent method for resolving shattering is a method from analysis.

Consider the liar’s paradox, A = [A = ?]; this statement is a contradiction. Likewise,

while a MA might almost always shatter a D, it might not shatter D, which is unintuitive and

not default-rational. A resolution to this is to consider the following iterative approach, both

generally and then as applied to default-VC, with infinite time.

Take a random initial assignment to atoms. Repeatedly determine if the statement is true; if

false, randomly flip one value. If true, keep the assignment for the next iteration. If the sequence

of flips reaches > in the limit and the assignments converge, then the sequence is valid.

Analagously, select a random initial model {A} = A, and for some sample D, test if some

A 2 A shatters D, ie sA(D) = >; if so, keep A the same; else, add some A 2 MA to A. If

sA(D) converges to > in the limit, then MA |⇠ D. That is: if a sequence of sA(D) is Cauchy,

it has a valuation (ie, is not a contradiction) and if the limit is >, then MA |⇠ D.

If the model can VC-shatter the task, then the sequence will have limit >; else, it will

approach its limit as close it can and then not converge in the variables it cannot solve. If the

value is near >, then the model approximately solved the task; otherwise, it converged only on

the solved variables and the modeler can focus on the variables that did not converge.

This formulation provides a simple way to evaluate valuations possibly contradictory on

undecidable formulae: the liar’s paradox, for example, will never converge to an assignment,

and the formula ? does not converge to >. If attempting to determine MA |⇠ D, one could

attempt to see if a sequence of samples Cauchy-converges. LC2 will solve most of the tasks but

will fluctuate on the two tasks $,⌦ that it cannot solve. This method also naturally lends to

a decomposable structure. Furthermore, a version of the PAC-bound can be used to determine

a stopping criterion for a sequence. In contrast, in [17] Adams demonstrates that a reasonable

consequence |⇠ makes sense i↵ lim
n!1

Pn(A) = 1 but says nothing if the sequence does not converge.

Similarly, if a MA and a D are set up such that they cannot be well-evaluated for a shatter,

they will not converge and randomly fluctuate.
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7 Conclusion

In this project, we considered the VC dimension and its fundamental problem of being rigid

both in what it is defined on and in its valuation, in addition to an incapacity to decompose its

problems. Here, we successfully developed several theoretical strategies grounded under default

logic: the first strategy, Extremal Statistics, made a game-theoretic interpretation through a

probabilistic vehicle. This method had a structure implicity decomposable and that could make

partial conclusions on finite, partitioned objects. The second strategy, PAC-bound, actually

considered the task as a probabilistic one for which bounds could be produced for asymptotics

could be evaluated over samples. ✏-entailment related this strategy back to our default logic

foundation. The third strategy, Disjoint Cover, engaged both kinds of previously seen task

decompositions as covering problems and developed two set-theoretic strategies for achieving

these; furthermore, it built a new measure function that was more general than probability and

that permits useful reweightings of the data space. The fourth strategy, Plausibility, used the

theory of plausibility to resolve two lasting issues of incompatible models (or tasks) and codify

notions of ordering. Plausibility has a collection of highly useful properties – including default

logic equivalence – that make it a reasonable general-purpose probability generalization for use as

a way to formulate shatter depending on the tasks and models at hand. Finally, a short strategy

of Sequences shows an alternative strategy absent default logic that can handle contradictions.

Future work would certainly include implementations.
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