
Modularized Internal Attention Network:
Draft

Morgan Bryant
Department of Psychology

Stanford University, Stanford, CA, 94305 USA

February 12, 2017

Abstract

I outline a first draft at a novel neural network that uses a hidden
attention mechanism to selectively process information within the net-
work. This contrasts with Recurrent Attention Models [3] by manag-
ing attention not in visual glimpses trained with reinforcement learn-
ing signals but instead on its internal layers. The modules unique to
this architecture are differentiable and allow the network to be trained
with standard gradient methods, without need for a reinforcement
learning signal.

1 Introduction

This kind of modularized internal attention network has the potential for:

• Possibly make networks faster at learning;

• Speed up test-time computation time;

• More easily transfer;

• Shed intuitive light on the processes of the network;

• Reconcile an aspect of formalism and connectionism;

1



• Potentially indicate a style of model structuring and learning that can
match current neural networks as well as provide a model that more
realistically mimics neurobiology.

The components that yield these results are the in-network attention selector
and the module table. The attention selector is a portion of a layer output
within the network that is treated as a command for processing as opposed
to a set of parameters for a fixed computation. The module table is a col-
lection of modules or small fully-connected layers that act like mini networks
by encoding often-repeated operations or simple programs. But, critically,
these programs are hidden: unlike the programs in the Neural Programmer
Interpreter [4], these programs are not explicit about the action that they
perform.

The hypothesis of this report is that the modularity of the network will
encourage a more collaborative and specialized utilization of its resources in
parallel, while still preserving the extreme function learning that made neural
networks famous by promoting hidden units as opposed to formal symbolic
units.

Besides the above primary hypothesis, it might seem intuitive that this
kind of network might also transfer better to new tasks or be wholly trans-
planted into newly initialized networks. Such a claim may be supported
by the ability to freeze module layers, zero-out module weights, or simply
transfer the module layers.

2 Formal Model

The model can be conceived as a collection of pairs of layers, where one layer
is a module and the other is a fully connected layer. Call the output of the
previous layer the matrix X ∈ RN×(B+θ) for any whole constants N,B, θ with
the following characterizations: θ is small and represents the parameters to
modules; B is arbitrary and relatively large and is the number of modules;
and N is somewhat small and indicates the number of modules that the
subsequent layer will use.

Then, there are two approach that may work:

• Updated Approach The actual approach that works is: For a layer
X ∈ RN×(B+θ), split X into [XB Xθ] = X, where XB ∈ RN×B and

2



Xθ ∈ RN×θ. Take the Module tensor (order 3) M ∈ Rθ×B×φ and
choose one of two routes:

1. Make N copies of M : M ∈ RN×B×θ×φ. Make Z = M · σ(XB)
where σ is the softmax function, and then make Y = ZXθ. Here,
Z : RN×θ×B×φ ×RN×B 7→ RN×θ×φ and Y ∈ RN×φ. This approach
operates each module in M each of the N sets of parameters xθ.
The Z is the candidate Xθ-parameterized module instance for each
possible module, agnostic of the respective choices of modules XB.
Then, Z is reduced and summed according to module selections
with xB. Finally, Y is mapped via a fully-connected layer to the
next X ′ via FY = X ′, F ∈ R(N×φ)×(N ′×(θ+B)). (A reasonable
extension is to append to Y the selector matrix XB via Y ′ = [Y
XB] such that X ′ = F ′Y ′, F ′ ∈ R(N×(φ+B))×(N ′×(θ+B)).)

This method is highly distributed: while the typical interpreta-
tion of a module system selects modules first to send parameters
second, the scheme outlined here allows for a sum of weighted
partial-computations using multiple modules; while this can be
thought of as a partially-learned, unstable state, alternatively this
could also be an learned combination.

2. The above system is highly distributed and permits computations
to be compiled in pieces, intentionally or not, for final results. But
the intuitive understanding is that modules will be fine-tuned for
specific tasks and the network sends queries into individual mod-
ules. That is, the softmaxed module selector vectors σ(XB) are
expected to be disproportionately one-hot. Due to this expecta-
tion [to be confirmed via tests] and the fact that the version (1)
above is expensive per layer, a reasonable variant is the following.
This version is explicitly less general due to the space of post-
normalized XB being the space of one-hot vectors instead of the
space of categorical distributions, but if the two are reasonable
approximations to each other, then Y ≈ W . This approximation
weakens as B grows.

For each n from 1...N , take i = argmax
i

(xn) be the index

of the largest module-selecting value in, using numpy index no-
tation, XB[n]. Take Mn

i be the ith module in M , Mn
i ∈ Rθ×φ.

Concatenate all these M ′ = [M1
i M

2
j ... MN

k ], for i, j, ..., k each

3



drawn from [1...B]. Note that M ′ ∈ RN×θ×φ. Make W = M ′Xθ,
where W : RN×θ×φ × RN×θ 7→ RN×φ. Alternatively, think of
the N distinct Wn = Mn

i Xn where i varies by n. Both ver-
sions happen via N distinct [θ 7→ φ] 2nd−order matrix multi-
plications. Finally, this W is fully connected to the next X ′ with
an FC ∈ R(N×(φ+B))×(N ′×(θ+B)) when you include the hardmaxed
or softmaxed XB in the operand as well as W .

A complexity analysis for one layer pair Version (1) is con-
strained by the operation MXσ

B which is O(N · Tens(B, θ, φ)), where
Xσ
B = σ(XB) ∈ O(NB) of N softmaxes over B elements each, and

where Tens(B, θ, φ) is runtime complexity of a 3rd−order general Ten-
sor multiplication, which at worst is naively implemented in B · θ · φ,
meaning version (1) is, for general values, O(N ·B · θ ·φ). The memory
complexity is O(B · θ ·φ) since the N desired module operations can be
processed in parallel or in sequence, and are independent of each other.

Version (2) is constrained by M ′Xθ which is O(Nθφ + B). The gains
in this version is in a multiplicative factor of B, substituted for an
additive correlate, due to the argmax operations. Besides this, the
concatenation operations in (2) may have overhead but they do not
increase complexity besides an additive (hence, negligible) factor of N .
The memory complexity is O(θφ+N).

Notably, the complexity gain in B signals two points: First, that B pro-
cessing costs can be traded off when desired, such as: use version (1)
during train time to learn smoothly and (2) at test time in a real-time
application. Or, alternatively, (2) could be used for faster training per
amount of time, and (1) is used at test as a ”bag of experts”. Both ver-
sions are also constrained by the fully-connected multiplication, which
can be done in O(N · N ′ · (θ + B)) naively or in O(N2.376 · (θ + B))
if N = N ′ using the Copper-Winograd algorithm [10]. Both versions
have a memory complexity here of O(N ·N ′ · (θ +B)) naively.

• Fully Distributed Approach For each 1 <= i <= N , take Xi ∈
Rθ+B and let xθ = Xi,1:θ, or the first θ entries of Xi, and let xB =
Xi,θ+1:θ+B be the last B entries of Xi. Make Zi = xθ · f(xB))T such
that Zi ∈ RB×θ and where f is a function that ensures that the vector
is normalized and nonnegative, such as a normalize ◦ relu or a softmax,
and preserves the dimensionality B. ([7] suggests that a softmax is a

4



valid choice for f by giving a probabilistic interpretation to the gating
networks.) The outer product between the xB and xθ are, intuitively,
the weighted selections of where to send the given parameters. Then,
make Yi = MZi, where M is a 3-dimensional tensor of the B modules
that each sends Rθ → Rφ and constitutes the “first” layer of the pair
of layers.

The nonlinearity is useful since xB represents the network’s choice for
which module to channel the parameters xθ, and as such, may be best
represented as if they were probabilities.

Figure 1: A visualization of the flow of computation used in the distributed
approach

• Selective Approach The approach outlined above takes a distributed
approach to selecting attention modules to direct computation flow.
Alternatively, if instead modules are uniquely selected, these modules
would be [both intuitively inclined towards being less hidden? ... and]
more optimized for computation.

For each 1 <= i <= N , similarly take Xi ∈ Rθ+B and let xθ = Xi,1:θ

and xB = Xi,θ+1:θ+B. Make Zi = zi = f(xθ), where f is a function
that normalizes but is not necessarily make nonnegative. Then, make
Yi = Mjzi, where j = argmin

1<=j<=B
xB.

Notice that this model replaces a rank-3 and rank-2 calculation with
a rank-2 and rank-1 product and eliminates an outer product calcula-

5



tion. However, it sacrifices total distributivity, a property that tends
to benefit neural networks, as well as complicating the training of un-
selected modules, since [unsure, but seems perhaps right:] it becomes
statistically less likely for the least-selected modules to receive much
selection or training after the primary selected modules are trained.

Finally, combine (and flatten) the Yi into a vector y in RN×φ, and feed

y to a fully connected layer RN×φ → RN ′×(B′+θ′) (the “second” layer of the
pair) with a nonlinearity, the output of which is treated as the input to the
next module.

In both models, a fully connected layer is useful in letting the network
use the module outputs in concert. A reasonable modification, in fact, is
to preserve the XB ∈ RN×B as an additional residual input to the fully
connected layer [9].

3 Discussion

This model effectively generates (in X) N module computations, where xθ
are the parameters (of fixed size) and xB indicate which module(s) each set
of parameters should be fed to. xθ correspond to standard neural network
parameters passed from layer to layer, so these easily fall in the backpropa-
gation paradigm. But unlike other internal attention-selective models as in
[2,3], the xB module vector is simply another vector output by the system,
orthogonal to the weights they manage, and thus can be trained “indepen-
dently” of each of the parameters xθ that are fed to it, but remain sensitive to
the types of parameters fed to it. These vectors are easily differentiable and
thus can be backpropagated through – and without any special machinery.
{Draft note: I still have to work out these derivatives.}

Another point of note is that the modules, as the word implies, are build-
ing blocks that can be somewhat independently considered. Benefits to this
aspect include the following:

• If module learning was a desirable task, a multi-layer network could
utilize the same module matrix/tensor for each of the computations
and thus provide much more signal to the modules.

• The modules could be incorporated into a recurrent neural network
rather naturally, since it implicitly changes the computation it performs

6



based on context, a problem that naive recurrent networks struggle
with.

• If certain properties were going to be examined as bottlenecks in a
network, any module set could be hand-designed to test certain char-
acteristics (eg, a quick test to determine borderline expressivity could
be zeroing out elements of modules by their index) or even wholly
transplanted with an alternative system (ie, something more involved
than a simple linear operation M such as another neural network). The
module is only conditioned on being a function that does Rθ → Rφ.

• The contents of trained modules can be examined in isolation for what
they do: modules can be subjected to tests to determine the function
they have – though, since they are presumably hidden unless they are
hand-designed, these would probably not yield comprehensible results
in isolation except coincidentally.

• As already stated, module tensors can be lifted out of a trained network
and placed in a newly initialized network to potentially speed learning.
In a different mode, a network can be retrained on learned modules,
subject even to a genetic algorithm to improve the modules.

4 References and Related Literature

1. Michael I Jordan and Robert A Jacobs, “A Competitive Modular Con-
nectionist Architecture”, MIT, MA, USA, https://papers.nips.cc/paper/430-
a-competitive-modular-connectionist-architecture.pdf

2. Marijn F. Stollenga, Jonathan Masci, Faustino Gomez, Juergen Schmid-
huber, “Deep Networks with Internal Selective Attention through Feed-
back Connections”, IDSIA, Manno-Lugano, Switzerland

3. Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu,
”Recurrent Models of Visual Attention”, Google Deepmind, Mountain
View, CA, USA

4. Reed, Scott, and Nando De Freitas. ”Neural programmer-interpreters.”
arXiv preprint arXiv:1511.06279 (2015), Google Deepmind, Mountain
View, CA, USA

7



5. Gregor, Karol, et al. ”DRAW: A recurrent neural network for im-
age generation.” arXiv preprint arXiv:1502.04623 (2015), Google Deep-
mind, Mountain View, CA, USA

6. Duda, R.O. & Hart, P.E. (1973) Pattern Classification and Scene Anal-
ysis. New York: John Wiley & Sons.

7. McLachlan, G.J. & Basford, K.E. (1988) Mixture Models: Inference
and Applications to Clustering. New York: Marcel Dekker.

8. Jacobs, R.A., Jordan, M.I., & Barto, A.G. (1991) Task decomposi-
tion through competition in a modular connectionist architecture: The
what and where vision tasks. Cognitive Science, in press. Found from
(1) above; this is an alternative modular architecture on the same
what/where tasks.

9. He, Kaiming, et al. “Deep residual learning for image recognition.”
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016.

10. Coppersmith, Don and Winograd Shmuel, “Matrix multiplication via
arithmetic progressions”, Journal of Symbolic Computation, Volume 9,
Issue 3, 1990, Pages 251-280, ISSN 0747-7171,
<http://dx.doi.org/10.1016/S0747-7171(08)80013-2>

8


