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I propose using a modular neural network that I’ve designed to model the phenomenon of 
cognitive skill transfer, specifically as a consolidation of multiple skills for the sake of a new, 
more complicated task.  This project will test its capability for skill transfer compared to 
other neural architectures. 
 
1)     Modular Neural Network Shortcomings  Modular neural networks are similar to 
simple ones; the key differences are that simple ones suffer crosstalk [reference] but are 
more expressive.  Let’s consider what other advantages modular networks might have.  
Among the various tasks that a _modular_ NN can do, most tasks that might seem like 
initially like improvements turn out not.  For example, take the following transfer task:  
train a modular neural network to do a task involving skills A and B, then test whether it 
has improved ability to learn a task only involving skill A.  However, transfer is already 
better done by the standard neural network strategy of taking a network trained on a 
relevant task on supercomputers and then replacing the top layer and training the resulting 
network to the new task.  Additionally, there's little research to support that a top-layer-
replacing scheme is what human minds do when they transfer learn. And beyond transfer, 
there are numerous tasks that may seem promising but actually don't work out.  
Specifically:  * The ability to change its train-time and test-time efficiency is not a critical 
point, since it is already a bloated model.  * The distributed modules have no reason to be 
easier to examine critically than normal standard neural network layers.  * Similarly, 
incorporating hand-selected operations as linear units within the modules for the sake of 
testing bottlenecks has little practical utility.  See [10] for more about the tradeoffs between 
modular and standard networks. 
 
2)    Modular Neural Network Advantages  There is one objective, however, that 
standard network procedures have been insufficient for: an ability to smoothly combine 
skills learned elsewhere.  That is, if two standard networks learn tasks that develop skills A 
and B respectively, there is no clear way to train a composite network that can use both the 
skills A and B naturally.  
    Modular networks, however, have the potential to do this.  Modular networks, and 
the exemplar Modular Internal Attention Network (ModIAN), have a bipartite focus on 
skill development and skill application, represented by applying the module to X_theta 
(parameter half-layer) and X_B (selection half-layer) in ModIAN.  Comparatively, standard 



networks only care about skill development.  The skill application aspect of modular 
networks gives them the ability to deliberately relearn how to apply skills that are already 
developed, avoiding redeveloping those skills.   
     A high-level specification given two ModIANs N1 and N2 that learned distinct 
modules M1 and M2 and how to apply them to their respective tasks, a third ModIAN N3 
could be developed with its module initialized as a concatenated M3 = [M1, M2]; N3 
would then only need to learn how to use the pre-developed skills in its M3 for its new 
task, avoiding retraining M3 and only training X_theta and X_B. 
     If this hypothesis is true, then a collection of module networks can be trained 
independently to learn specific skills and later be combined in a system that can use those 
modules effectively, in a way that current networks are incapable of doing naturally.  
Additionally, this model may be signal a more general procedure that allows machine 
learning and deep learning components to be combined in a deep learning framework, 
recursively and arbitrarily: the ability for the network to 'think' about what it is doing 
suggests a simple meta-cognition.  From another lens, this can be thought of a neural-
network-guided ensemble of neural networks. 
 
3)   Cognitive science literature: justifications and connections   Beyond the machine 
learning implications, this model is psychologically grounded, and its effectiveness would 
support some existing theories of cognitive skill learning and transfer. 

• ModIAN can model how a person combines learned skills to accomplish a more 
complicated task, supporting the schema hypothesis that knowledge is used, stored, 
and reused in 'chunks' for repeated arbitrary access, in contrast to relearning skills 
for every novel event.  Accordingly, [3] claims that skill acquisition uses a complex 
interaction of elementary components. 

• Preparation for Future Learning (PFL) interpretations of transfer supported [8] 
•  [2] claims that human skill acquisition requires integration and reuse, so a neural 

model claiming to do the same should have a response to this.  Integration is solved 
by the neural aspect of the network: the new network would aggregate the various 
module’s outputs into overall output by training a new fully-connected layer.  Reuse 
is maintained by using previously-trained networks. 

• [3],[5],[6] and [7] support that there are three fuzzy phases of learning by practice: 
phase 1 takes place when target task is first encountered, and the cognitive strategy 
is to understand the rules and use analogical reasoning to apply previous 
knowledge; in phase 2, learning proceeds by feedback of results; and in phase 3, 
performance is increased by finding new strategies, shortcuts, and ‘inlining’.  The 
model below would support such a framework. 

 
4) Specific Project Proposal  The specific proposed project will compare the ability for 
a network to mimic the human process of skill synthesis as a keynote example of transfer 
learning.  The first baseline experiment is to simply see if a new network can transfer 
effectively, given a new task that can use old skills. 
 As a note, cognitive (composite) skill learning that does not involve transfer is being 
explicitly ignored for this experiment.  For example, VanLehn [7] identifies three questions 
that human learning events can be analyzed by: What provoked the person to switch from 



the task to learning?  How did they reason?  Did / how did they retrieve principles?  This 
current experiment avoids these questions as well. 
 Consider two networks N1 and N2 with trained modules M1 and M2.  Initialize a 
new N3 with the module M3 set to M3=[M1 M2], and the rest of the weights are random.  
The specific learning scheme for the network N3 

1. The first phase of learning, which corresponds to internalizing instructions, would 
most generally correspond to a search procedure over numerous possible 
component modules to use in the method.  We assume that this determination of 
module composition is spontaneous [9] as a transfer task;  so, we simply provide 
N3 with its initial module for this experiment. 

2. Second, we fix M3 from being updated according to backpropagation.  Train the 
rest of the layer – that is, X_theta, X_B, and FC. This corresponds to the cognitive 
strategy of attempting to apply previous skills.   

3. Finally, unfix M3 and let it be trained as well.  This improves the overall 
performance as a specialized system.  This also correlates to the 
optimization/generalization phase of human learning, as the person begins to 
consider this a task on its own, subject to individual  

This procedure will be compared to these five alternatives: (1) Two standard neural 
networks are trained for the two tasks, and a third network takes the two but replaces the 
two top layers with a single large layer;  (2) N3 never does step 2; (3) N3 never does step 3; 
(4) N3 learns from scratch; and (5) a standard network learns from scratch.  We 
hypothesize the above procedure outperforms alternate procedures: (1) and (2) explicitly 
do not undergo attempts to apply previous strategies, and (3) does not demonstrate an 
intentional focus on applying previous strategies.  (4) and (5) are comparable in terms of 
cumulative learning speed in contrast with the hypothesis, as well as the tradeoffs between 
retroactive interference [10] and expressibility.  It would also befit comparing against other 
similar, state-of-art modular networks that are capable of doing a similar task. 
 If results are sparse, we may try ignoring the N2 network and M2 module, and 
instead make M3 = [M1 Noise]. 
 The specific task is undecided.  A first possibility is: task for N1 is standard MNIST 
recognition, task for N2 is addition, and task for N3 is addition of two MNIST.  However, 
it would be more ideal to identify a task where there is some direct cognitive science 
literature about – perhaps the frog papers?  Even if we hand-create the tasks, ideally they 
would be of roughly similar complexity. 
 The FC layer might be better represented by mapping to the next layer I 
components of all N outputting modules, using at least B/I such mappings: else, spatial 
crosstalk concerns [10].   Until the network has issues, I probably won’t make this change. 
 
5) Extensions 
 Papers of particular relevance, sourced from [7] pg ‘533’, Bolivar90, 
Singley&Anderson89, Frensh&Geary93, indicate that a small amount of practice on subset 
tasks (ie, N1 and N2) help N3, but more practice (ie training) will result in highly 
diminishing returns.  A simple, reasonable task would be to vary the amount of 
transferrable material is by halting N1 and N2 training early. 
 In implementation, perhaps anneal the amount that the M3’s weights are affected. 
In a further attempt to mimic the human ability to also identify errors, an extension 



involving adding new modules is outlined below.  The extension effectively builds up the 
new module M3 with additional module units as extra computational units to assist 
consolidation.  It seems psychologically grounded but would require legwork. 

1. Perform the fixed-M step as outlined above; corresponds to the cognitive strategy of 
attempting previous skill application first.  If the task error is low enough, exit. 

2. Otherwise, switch off between the following two operations:   
a. Append 1 new module m to the system of modules M as M[:-1].  Train only 

this new module and X and FC, as in step one.  This corresponds to an attempt 
to learn an additional skill, to combine with previous skills, and also determine 
how to apply them in concert.  The network designer could also permit adding 
more than 1 new module, if there is some prediction about how many new ones 
are expected to be useful.  If the task is sufficiently solved, exit: a new skill-
schema was learned and the individual applied "knowing with” [8] growth of the 
overall skill. 

b. Else, if (a) was insufficient, retrain the module system as a whole: train back 
through all M, X, and FC.  This involves an entire reevaluation of the skillset.  
If the task is sufficiently solved, exit: corresponds roughly to a person having to 
'let go' and reevaluated a faulty prior epistemological belief.  Otherwise, the 
model needs to loop starting back at (2) and the individual underestimated the 
amount of new skills they would need to acquire to solve this.  If no looping is 
performed, it suggests the task was too difficult to use previous skills on, and 
instead, an approximate network was needed corresponding to replicative (not 
applicative) knowledge.  

 
 Another task:  see Catrambone (1994a,b), (Catrambone & Holyoak 1990, 1987) 
from [7, pg 10 “522”]:  transfer significantly increases when tasks are modified to highlight 
transfer opportunities.  This could be studied as: Does M4 = [M3 Noise] learn to use M3 
components?  A further extension here concerns the how the amount of similarity 
between tasks 1/2/3 and task 4 can affect transfer, as there are results that have the human 
equivalents (see [7] pg ‘533’, Bolivar90, Singley&Anderson89).  
 A next significant task could be how an agent can decide what skills from previous 
learned modules should be applied to a new task: this may be as simple as making a small 
Decider network (a standard NN) choose how to initialize X_B, and this might benefit 
from installing the X_B/X_theta optimization switch capability. 
 It may be interesting to test how well the ModIAN can shut off certain inputs when 
training certain kinds of components; selective specialization has the added bonus of 
shielding. 
 
Gating mechanism: not inspired by but similar to LSTM gates; theoretically justified by 
[11]. 
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