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Abstract

Two cognitive visuospatial methods for representing object locations are Egocentric refer-
ence frames, which place objects relative to a special central entity, and Allocentric reference
frames, which place objects on a stationary world. Humans have been shown to selectively use
each reference frame, but it is unclear why humans use certain frames in certain situations.
This work examines Deep-Q Reinforcement Learning Artificial Neural Networks that solve
path-finding navigational puzzles using the two reference frames as models of human neural
populations attempting the same puzzles. We provide a computational explanation for why
humans generally use egocentric frames for navigational challenges, which is centered around
cognitive skill transfer learning. Our results support the plausibility of connectionist cognitive
planning as well as indicate the advantages that curriculum learning provides for teaching
neural networks to plan effectively.

Introduction

This work is motivated by two natural observations: how children use locational reference frames in their
cognitive spatial maps and the apparent difficulty neural networks have at developing long-range plans.
Spatial mapping and planning, while not intrinsically related, are both necessary fundamental components
of navigation, a human cognitive skill that requires both understanding of a spatial environment and using
this understanding to interact with the environment. We study the hypothesis that neural networks model
human cognition and therefore can learn to navigate comparably to humans. Specifically, in this work we look
at two implications of this hypothesis: neural networks must be able to learn to plan, and human reference
frame observations can have a neural-computational explanation. We make some first steps supporting this
hypothesis by demonstrating that neural networks both can be taught to make rudimentary plans and when
learning reference frames exhibit explainable learning dynamics that are similar to those observed in humans.

Egocentric and Allocentric Reference Frames

When an intelligent entity interacts with external objects, it must somehow maintain a cognitive spatial
map of spatial relationships. Two kinds widely-recognized cognitive visuospatial frameworks that humans
use in their cognitive maps are egocentric and allocentric frames of reference (Bremner, 1978; Klatzky, 1998).
Both of these reference frames build useful models of relative locations of objects by relating everything to
useful, foundational elements chosen from the environment. Egocentrism and allocentrism are systematically
defined by Klatzky (1998), but the following definitions should suffice for our purposes. In brief, we say that
an agent uses an egocentric framework when it puts the foundational origin location wherever a selected
unique ego object is located. In this representation, the ego remains at the origin regardless of whether
or not the ego object moves. The allocentric framework can have an ambiguous definition, but for our
environments with mostly static objects, we say an agent uses an allocentric framework when it puts the
foundational origin location on the unmoving ground. In this allocentric frame, every object on the fixed
coordinate system moves in the agent’s representation only when the object actually moves in the world, in
an egalitarian sense. That is, if an agent X adopts an egocentric representation, when X moves, then any
object Y will appear to move in the opposite direction of X’s motion. If however X adopts an allocentric
frame, when X moves, X’s representation of X’s own location moves according to the world coordinate frame,
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and any other object Y will remain static in X’s representation. Each of these representational frames are
effective at putting relational information into a concrete, position-assignable map that can be accessed and
used for other purposes.

Infant Frame Acquisition and Usage in Search

Bremner (1978), Piaget and Cook (1954) and others have observed that at nine months of age, infants are
capable of searching for hidden objects and learning the locations of the objects, but are unable to realize
when the object has moved. In a classic study by Piaget called AB̄ or A-not-B, infants observed a researcher
hide a toy under hiding spot A repeatedly, and they would learn that if they searched for the object at
location A, they could find the toy. However, when the child observed the researcher hide the toy at location
B, they would reliably search for the toy at location A. Piaget suggests that this error occurs because infants
have not yet formed a coherent spatial framework. He further proposed that infants use an egocentric
representation to encode the toy’s location, such that they learn to point to an abstract location relative to
their own bodies that has been successful (i.e., at A) instead of correctly identifying the toy’s location in
the world at B and pointing to that spot. Bremner’s research has extended this study and confirmed that
infants exhibit an egocentric understanding when searching in this and other related challenges, but also,
they can also be compelled to use allocentric methods, given enough the right kinds of cues. Bremner raises
the question of why infants default to using an incorrect egocentric framework to solve hidden object tasks,
not an allocentric one, and by what mechanism this happens. Furthermore, Hardwick et al. (1976) have
shown that children by age eight are capable of allocentric activity but also erroneously default to using
egocentric models in experiments testing their ability to build and use a cognitive map of a classroom.

In this study, we propose a computational basis for why egocentrism is both more representationally
powerful and more plausible as the dominant ‘phenotype’ among reference frames. Under a connectionist
assumption, we demonstrate that neural networks exhibit the same bias towards egocentrism as these infants.

Navigation Requires Planning

In addition to building a cognitive map of the world, humans need to be able to interact with objects in
the world. Specifically, as humans move around, they need to be able to guide themselves around objects
that may be moving or interacting with each other. This fundamental skill – to plan a path – is a essential
capability that cognitive agents must have (Lake et al., 2016). Furthermore, humans can learn to navigate
very quickly and very well. The encompassing concept of navigation is, however, not particularly indicated
as a skill that neural networks are good at, for which numerous reasons have been cited including inabilities
to reason and do search (Lecun, 2015). In order for neural networks to be a compelling model of how human
cognition works, it must be demonstrated that they can indeed form sensible plans.

Can Neural Networks Do Planning?

Robust planning and navigational pathfinding has been identified as a problem that is unsolved, generally
difficult, and prerequisites any AI-complete system (Weston et al., 2015). Lake et al. (2016) present a
particularly strong and concrete criticism against the possibility neural navigation. They look at the DQN,
a deep reinforcement learning model presented by Mnih et al. (2015) that is challenged to learn various Atari
video games. One of the complex control problems, a game called Frostbite, was particularly challenging
for DQN. In short, Frostbite requires the player to jump treacherously across floating ice tiles to collect
enough snow bricks to build an igloo; success requires planning to acquire the bricks. See Figure 1 for
more on Frostbite. Although the network was able to reach human-level performance on 29 out of the 49
games, it was wholly unsuccessful at succeeding at Frostbite “and other games that required temporally
extended planning strategies” (Lake et al., 2016). They blame the fact that the network is a “powerful
pattern recognizer” in a model-free reinforcement setting, which diverts resources away from planning, and
does not incorporate explicit model building, which they claim is a crucial aspect of intelligent systems.

In this work, we took acknowledge this criticism as a present unknown in deep learning work: can neural
nets learn to plan? We second the DQN criticisms are especially reasonable because the way the DQN was
trained was very unlike the way humans train. Lake et al. highlight that the Frostbite DQN was trained
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Images of Atari game Frostbite, borrowed from Lake
et al. (2016), a difficult challenge for neural net-
works. Lake’s caption: “Screenshots of Frostbite, a
1983 video game designed for the Atari game con-
sole. A) The start of a level in Frostbite. The agent
must construct an igloo by hopping between ice floes
and avoiding obstacles such as birds. The floes are in
constant motion (either left or right), making multi-
step planning essential to success. B) The agent re-
ceives pieces of the igloo (top right) by jumping on
the active ice floes (white), which then deactivates
them (blue). C) At the end of a level, the agent must
safely reach the completed igloo. D) Later levels in-
clude additional rewards (fish) and deadly obstacles
(crabs, clams, and bears).”

Figure 1

from scratch and given reinforcement rewards only on completing the entire task, and when it failed on
that, it was then trained to complete milestone sub-goals such as collecting one brick because “without these
sub-goals, the DQN would have to take random actions until it accidentally builds an igloo,” (Lake et al.,
2016). They suggest that this learning strategy is very different from the way people do it. We also agree
that it is cognitively unrealistic that humans approach this game as a single monolithic task. We suggest
that it is practical to introduce a curriculum of prior sub-goals for teaching planning tasks to eventually
solve the whole task (to be discussed in later sections). This aligns with another claim by Lake et al., that
prior knowledge is essential for a human player’s success. However, they insist that this prior knowledge
must be encoded and combined in an explicit model. They claim that connectionist neural architectures are
ineffective at making such models and therefore are unsuitable as cognitive models. We disagree that neural
networks cannot make plans because of their inability to develop explicit models, and our preliminary work
suggests that explicit model-building is not absolutely necessary for a neural network to exhibit planning.
That is, we suggest that learn networks can learn behavior that resembles model-learning without being
directed to do so.

PathFinder

PsychoPath (www.kongregate.com/games/k2xl/psychopath) is an online video game available for free
through a web browser. The main objective is to try to navigate through a 2D maze to reach goal on
a collection of designed mazes. The world also contains movable blocks, which the player may push by
walking into. See Figure 2 for example challenges.

PathFinder is an adaptation we have developed that is inspired by the mechanics of PsychoPath. In
PathFinder, as in PsychoPath, the objective is to navigate the virtual player starting from a given initial
location through a mutable maze to the goal in as few steps as possible. The player can only be moved
one space at a time in a cardinal direction (in this paper, referred to as UP, DOWN, RIGHT, and LEFT).
The player cannot step on indicated wall squares or outside of the world, but they can push an unanchored
block if they step from behind it and that the space that the movable block would slide onto is empty. The
game is a full-information, single-player, non-zero-sum game without any temporal component; attempted
invalid moves do not alter the game state in any way. For consistency’s sake, we call unique initializations
challenges, from which a variety of game states may be reachable based on actions taken, and a collection
of challenges is a task. PathFinder was chosen because it provides an effective collection of problems that
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Some PsychoPath game states. The player is located at the circular icon, W represents the goal, black squares are
immobile wall blocks, pink (or light gray if image is in black and white) squares are blocks that the player can push, dark gray
squares are vacant tiles, and the numbered squares trace the player’s moves. In some challenges, it may be difficult to determine
what path to attempt to clear.
(a) Easy challenge: initial state.
(b) Easy challenge: state after two moves down and two moves left on keyboard.
(c) Movable block challenge: initial state.
(d) Movable block challenge: after several moves. On the latest move RIGHT, a block was pushed RIGHT.
(e) Movable block challenge: the player’s moves and block pushes have cleared a path to the goal.
(f) Difficult challenge initial state. It is perhaps unclear what paths are best or valid.
(g) Difficult challenge: oops - in this round, the player’s choices have blocked any possible path to the goal!
(g) Difficult game: RIGHT, RIGHT were better initial choices.

can test the differences between allocentrism and egocentrism. Additionally, this game can test a neural
network’s ability to exhibit short-range planning. The relative difficulty of simple challenges is intuitive, and
literature recommends mazes as tests for visuospatial navigation experiments (Grön et al., 2000).

Frames of Reference and one-away versus two-away challenges

When tasks are simple, such as when the agent and the goal are initialized directly next to each other, then
learning to reach the goal amounts to identifying the single direction to move in, and the allocentric and
egocentric frames are equally informative and equally capable. For example, the task all-1-away (see Figure 4)
causes no representational difference between the two possible frames being used: each initial challenge is
monolithic and functionally unique, requiring simply the single correct action per initial state. However,
when the tasks become more complex, the distinct frames of reference take on different representational
behavior. In task all-2-away (see Figure 5), the initialized state is placed within two steps of the centered
agent. In this scenario, when the agent takes its first action, the same initial state is representationally
invariant between egocentric and allocentric frames. After the first action, if the action was in the right
direction, then in the resulting state the agent will be beside the target state. However, at this point, the
two frames have different appearances, even between identical initial states and initial actions. If the frame
is allocentric, then the view of the agent and goal is in an unprecedented, unique arrangement, and this
newfound state must be learned from scratch. If the frame is egocentric, the representation has adjusted
so that the goal appears to have moved towards the agent. This resulting egocentric view now resembles
exactly one of the states from the all-1-away task, which prior skill can hypothetically inform how to choose
the current action correctly. Figure 3 visualizes the functional differences between allocentric and egocentric
frames in PathFinder.
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Figure 3: Different views or frames of reference on the same states and same actions RIGHT and UP. The upper images are
allocentric views, and the lower images are egocentric views. Yellow guides indicate what the frame of reference keeps constant
between moves and surfaces as the representation of the underlying game state.

The R-U-RU task

To compare the effects of egocentric and allocentric representations, we tested the ability for neural networks
to learn a simple proof-of-concept PathFinder task, which we call the R-U-RU task (Figure 4). The R-U-RU
task consists of three challenges, each in a grid world five tiles wide and five tiles tall. For each, the agent is
initialized in the center. In challenge R, the goal state is immediately to the right of the agent. In challenge
U, the goal is one tile above the agent. In challenge RU, the goal is up and to the right of the agent. This
challenge is designed to be both stripped to the barest parts while still resembling the AB̄ challenge given
to the infants, who remain seated while the target varies location.

challenge U challenge R challenge RU challenge U challenge R challenge D challenge L

Figure 4: Two tasks. Left: the R-U-RU challenge represents the simplest case that demonstrates an ego-allo difference. Right:
the all-1-away task with the Agent centered has all situations in which the goal is within one step.

U R D L UU RR

DD LL RU DR DL LU

Figure 5: Task all-2-away: with the Agent centered, this task has all situations in which the goal is within two steps.

Experiments and Results

Data representation and environment

We encoded our world states as four binary 5x5 matrices for the agent, the goal, immobile block locations,
and mobile block locations, where a ‘1’ indicated that such an object was present at the location. In the
R-U-RU task, all states were reachable in two steps, so the network was given two opportunities to move
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and attempt to reach the goal. A cardinal action would result in a deterministic game state change in the
relationships between objects and the agent, but the different frames of reference have their own ways to
present the new state to the agent. These states were generated programmatically.

Reinforcement learning setting, hyperparameters, and network topology

For interacting with the environment, we used a Deep Q-Network (DQN) reinforcement learning paradigm.
Over the course of training, the reinforcement agent maintained and learns ‘Q-values’ unique to state-action
pairs, among which higher-valued actions in a state indicated preferred actions for that state. In standard
so-called Q-learning, a table of values for each state-action pair is maintained. However, this state-action
value storage method is impractical when the number of states and actions grows or when the agent must
generalize to unseen data, since the table method does not degrade gracefully. Instead, deep Q-learning
attempts to alleviate these issues by approximating Q-values using a neural network to estimate values as
output given an image as input. For more information on Q-learning and deep Q-learning, please see Gosavi
(2009); Mnih et al. (2015, 2013). In our setting, the reinforcement agent received a game state represented
as four binary matrices and was tasked with determining the best action to take in order to receive a delayed
reward; the action selected is the one whose estimated state-action Q-value was greatest in that state. The
reinforcement agent would acquire its Q-value estimates by feeding the represented state to a neural network,
which would output values for each possible action given the state.

The reinforcement agents and trained networks were randomly seeded for all comparative experiments.
The agent was permitted up to two actions, in which it attempted to achieve the goal reward (of value 1), and
all other actions would result in no reward. The action that was taken was always the one with the highest
value as determined by the network. In R-U-RU, there are no invalid actions to be handled. For all the
possible actions, the error signal was given only to the action that was actually taken. The agent was trained
on all three challenges per training epoch, in a single batch of size 32, which sampled the three states with
replacement. For each challenge, there was a random chance of taking an action chosen uniformly randomly;
the probability of this chance was 0.8 in the presented trials. The agent was tested intermittently between
training trials on each challenge in the task, once each without sampling; these results are reported. The
Bellman equation gamma discount was set to 0.9, and network updates were applied immediately without a
buffer.

The neural networks presented here were feedforward networks. They took as input the binary matrix
of size 5x5x4, which was passed through a single fully connected hidden layer with 64 units and finally fed
to output nodes representing Q-value estimates for the distinct actions available to the agent; in R-U-RU,
the output had four nodes representing actions moving the agent in four cardinal directions. After each
layer, the linear output was passed through RELU activations; the first hidden layer applied dropout with
probability 0.5 after its RELU, and the output was passed through a tanh squashing function. The network
was trained using the Adam optimizer (epsilon 1e-6) variant of gradient descent with learning rate 1e-4.
Losses for the gradient were calculated using a huber loss (with maximum gradient 3e-5) applied to the
difference between the selected action’s corresponding output Q-value and the reinforcement’s gamma times
the output Q-value plus the reward. Network weights were initialized to random small nonnegative values
for all the layers except the last, which took small mean-zero values, each scaled proportional to their layer
sizes. Twenty seeded sample networks were trained for 2000 epochs each under both the egocentric and
allocentric frameworks on R-U-RU.

We chose to use fully connected networks as opposed to convolutional networks due primarily to the sim-
plicity of the challenges. On harder challenges, we expect that convolutional networks and deeper networks
would be more appropriate.

Curriculum

During preliminary explorations, we observed that networks that could not reliably learn to solve two-
step-away challenges. Specifically, when a network was given a task with any two-step-away challenges, it
was usually unsuccessful; networks given only one-step-away challenges were almost always successful. If,
however, we simply let the networks learn the one-step-away tasks before presenting any two-step-away tasks,
they were reliably successful if the network was using an egocentric frame. Networks using the allocentric
frame were still generally unreliably successful.
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We give thorough explanation for this phenomenon in a later section, but the simple explanation is that
egocentric frames can learn to reuse skills that they have previously learned if they have already learned it.
If however the network is tasked with learning both one-step and two-step challenges concurrently, it was
less effective at learning both learn a prior skill and use the prior skill at the same time. If the frame is
allocentric, there is no opportunity to transfer skills from simpler challenges to more difficult challenges in
R-U-RU.

The relevant point here is that we introduced curricular aspects into our experiments because, in part,
they had a significant impact on the success of learning.

Statistical Results

Figure 6 and Figure 7 present analyses of the effects of curricula and frames, respectively, for our experiments
on the R-U-RU task.

Our experiments tested the effects of various curricula on PathFinder success (see Figure 6). We have
plotted the training results of 20 equally-seeded samples on the effectiveness to learn the R-U-RU task
within 2000 epochs on three curricula and two reference frames. Figure 7 shows the results from our tests for
the effectiveness of the egocentric and allocentric frames of reference. Using a binomial test over 20 equal-
seeded networks, we demonstrate that egocentric frames are at least as good as allocentric ones at solving
the R-U-RU task. When currcula are used, then egocentric frames are clearly better at solving the task
(p < 0.001). When curricula are not used, however, it is much less clear which of the two frameworks is more
successful. This supports the hypothesis that egocentric frameworks indeed make use of prior knowledge of
simple challenges when solving difficult challenges, but only when the prior skill is actually fully learned.
If not, then it is sensible that either framework would treat the three challenges as arbitrary challenges to
concurrently learn and would perform comparably. In the cases that used a curriculum, the allocentric frame
more reliably learned the two easy tasks and more reliably did not learn the full task within 2000 epoch
compared to the egocentric frame, which less reliably learned all three staring tasks.

Analysis of results

Networks trained to first solve R and U and only later be tasked with the RU exhibited qualitatively better
and faster convergence. Specifically, we observed that in egocentric frameworks, exposing the network to
only simple challenges for some time before introducing tougher ones significantly improved convergence, and
exposing the tough challenges gradually was slightly more effective than suddenly. These results support
the claim that networks that learn simpler tasks first can learn to reuse them effectively in more difficult
tasks, but only if they fully learn the simpler skills prior. In the allocentric cases, we observe an opposite
phenomenon: due to the inability to reuse its skills, the network learns best when it is exposed to all the
challenges equally soon. However, while the allocentric model learns better on average with no curriculum
than with one, the network is also less reliable and is the only place among our tests we saw networks that
could not reliably learn the two simple tasks. It is also important to note that the allocentric success rate was
consistently rising near the end of the trials with curricula. Future work should run tests for longer and verify
end learning. This aligns with current research findings that allocentric knowledge is slowly incorporated
into hippocampal storage (Holdstock et al., 2000).

State recognition analysis: why egocentrism performs better than allocentrism

We give the following explanation for the observation that egocentrism performs better than allocentrism
on the R-U-RU task. In egocentric case, if the agent was given time to learn easy challenges R and U, then
when it was presented with RU, it simply had to learn to place itself beside the block, which it knew how to
solve. This is because once it was there, the egocentric representation allowed it to view the new scenario
in terms of a solved scenario. So, when presented with a two-step-away state, the network only needed to
learn a single move. The allocentric model did not have this capability: the new scenario had no shared
representation to take advantage of. The extraordinary improvement the network received indicates that
such a curriculum was useful and that such a skill reuse was done. See Figure 8 for a diagram of skill reuse.
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This skill transfer is an example of a rudimentary plan that the network learned to do: simply, the
network was guided to learn to first to solve a simple task and then to learn to put itself into that situation
again. For future work, extensions of this can test a neural network’s ability to choose to navigate to paths it
knows hows to solve, much like a human driver choosing to navigate to a main road which is familiar instead
of traveling along a potentially shorter but less reusable path.

State space analysis: why egocentrism converges faster than allocentrism

Besides the egocentric frame provides a more effective representation than allocentrics frame, even in the
test without a curriculum, egocentric-framed networks learn faster than allocentric ones (see Figure 6).
Another reason for this phenomenon has to do with the number of states each network must learn to handle.
Egocentric representations contains fewer states than allocentric ones due to the reusability of representations
for multiple challenges. See Figure 9 as an example. Due to this, egocentric networks have fewer states they
have to learn and so converge more quickly.

This reasoning would also indicate a possible reason that human infants use egocentric frames more
readily but children and adults slowly lose this bias. If networks are indeed good models for human spatial
mapping, then egocentric representations would be faster to learn in humans as well, despite the presence of
allocentric frames even in an infant’s toolbox. The fact that networks and infants indeed share characteristics
around frame choice indicates networks can be a decent model of human spatial mapping; indeed, some initial
research is indicating as much (Ekstrom et al., 2014; Samsonovich and McNaughton, 1997).

Discussion, Predictions, Future Work

We have demonstrated that networks hold as suitable models of infant spatial mapping observations. The
network and the infant both exhibit a preference for egocentric representations early in development, which
we suggest is because egocentric frames are more rapidly acquired and more useful at simple compositional
levels of abstraction. Our analyses provide a reasonable explanation for why all humans, even infants, have
the both frames at their disposal, but it takes many years into childhood before a human is able to consistently
avoid defaulting to egocentric frames erroneously. We suggest that infants have both frameworks that are
learned with the same amount of information after birth; since egocentric frames can take advantage of simple
compositional patterns faster better than allocentric ones, we claim there is little biological motivation to do
otherwise. In infants, the egocentric frameworks are first frames to develop into a sufficiently coherent map,
which we conclude based on our connectionist hypothesis and the results in this work. Then, when egocentric
and allocentric frames differ, a competition between frames is indicated. In a competition between the two
models, infants tend to default to egocentric models because they are generally more developed. Competitive
constructs have been suggested by Burgess (2006) and others. We leave it to future work to build an artificial
network that has both frames at its disposal and gets to choose which frame to use in a given situation.

We have demonstrated that neural networks can exhibit rudimentary planning, supporting the greater
feasibility of neural planning. In particular, we showed that appropriate frames help networks plan in a
model-free fashion: the networks did not need models to transfer the use of prior skill knowledge. Notably, a
reasonable curriculum proved to be useful and possibly critical for neural planning. Future work can examine
more rigorous curricula on harder challenges.

Other extensions of this work includes an examination of actions. In this work, the agent could slide in
the four cardinal directions, which is unrealistic, since humans are directed creatures; for example, when a
human needs to go backwards, humans tend to rotate around and walk forward instead of walk backwards.

Open questions. It currently still remains to what extend neural networks can plan and learn to plan.
It is unclear how curricula help and for which problems it is unhelpful, useful, or crucial. Model-free planning
was indicated by this work, but it remains open how much neural networks can make models implicit.

Much thanks to Andrew Lampinen and Jay McClelland for providing insight and guidance for this project.
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Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

9



(a) No Curriculum (b) Stepwise Curriculum ‘Switch’

(c) Gradual Curriculum (d) The three challenges in task R-U-RU.

Figure 6: Comparison of test accuracy per epoch with varied curricula. (a): during training, the agent was presented challenge
RU 80% of the time and either U or R 20% of the time, on all epochs. (b): during the first 250 epochs, the agent was presented
only with U or R challenges. After epoch 250, the network received 20% R or U and 80% RU. (c): in the first epoch, the
network was only given R and U challenges, but over the course of the first 500 epochs, the network was gradually given more
and more RU challenges until after epoch 500, when the network was given 20% R or U and 80% RU. These networks were
tested every 200 epochs.
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Figure 7: Comparison of the effectiveness of egocentrism vs allocentrism subject to different curricula.
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Figure 8: The successful paths for each starting state in R-U-RU in allocentric (left) and egocentric (right) frames. Note in
the egocentric frame, the harder task decomposes into a simpler task.

Figure 9: All the possible states in 2-away tasks. Stars cover all the locations that a goal might be placed in an allocentric
(left) or egocentric (right) representation with the agent centered. In this scenario, there are 56 possible states, all of which the
allocentric represents as distinct. On the contrary, the egocentric representation views only 40 possible views.
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