
Discovery of Hidden Variables Using Probabilistic Methods 
 

Morgan Bryant (mrbryant@stanford.edu) 
576 Alvarado Row 

Department of Psychology 
Stanford, CA 94305 USA 

 
Jungmin Cho (joshcho@stanford.edu) 

Storey House, 544 Lasuen Mall 
Department of Psychology 
Stanford, CA 94305 USA 

 
 

Abstract 

In our project for Stanford course Psych 204, we have 
designed a probabilistic framework for improving other 
probabilistic programs. The project can be described as an 
automated hypothesis tester for discovery of hidden 
variables/factors for a given program. We attempt to answer 
the following: is such a program tractable, and can generated 
models improve results? 

Keywords: hypothesis testing, probabilistic models, WebPPL 

Background 
Previous work includes various methods for discovery of 
latent factors or learning the structure of a Bayesian 
network1. They identify three main methods of action: (1) 
constraint-based approaches, (2) score-based methods, and 
(3) ensembles. This project cites the second class of 
methods.  Besides this work, we heavily leverage the Psych 
204 coursework, the web-book Probabilistic Models of 
Cognition, and specifically work in Bayesian data analysis 
and statistics2. Our work falls in the realm of unsupervised 
learning, data analysis, and model selection. 

Overview 
Overall, we have designed a method within the WebPPL 
framework for implicitly improving probabilistic graphs. 
Our objective tasks are: 

1. Baseline:  First we present a solution to the 
benchmark researching-children-at-museum task, 
in which two independent researchers’ results are 
combined in a way that is unlikely considering the 
data, in WebPPL. We use the results of the 
approximate hypothesis-testing inference to select 
a model among the proposed candidates and 
provide confidences over various alternative 
hypotheses.  This task demonstrates the capability 
of a fully-Bayesian program for inferring about a 
model. 

                                                             
1 Koller, 2009 
2 Goodman, 2016  

2. We generalized the baseline framework to consider 
other kinds of data, and we present the results at 
the end of the paper. 

3. Hypothesis Class:  Here we present a discussion 
around the properties of the hypothesis class, and 
how it interacts with our data. 

4. Extend the system to various applied tasks.  
Extension (a) is a Lossy Recreation task that 
considers how well our system can estimate a 
model given data samples from a hidden model, 
and extension (b), an Encoding Compression task, 
tests the ability to recreate data using fewer 
variables than the model that generated such data. 

  
See here3 for a digital copy of the code. 

Baseline 
Our baseline WebPPL program examines two hypotheses 
on a given task inspired by "Posterior prediction and model 
checking"4: 

Imagine you’re a developmental psychologist, piloting a 
two-alternative forced choice task on young children. 
(Just for fun, let’s pretend it’s a helping study, where the 
child either chooses to help or not help a confederate in 
need.) You have two research assistants that you send to 
two different preschools to collect data. You got your first 
batch of data back today: For one of your research 
assistants, 10 out of 10 children tested helped the 
confederate in need. For the other research assistant, 0 out 
of 10 children tested helped. 

 
In this scenario, we first consider the original hypothesis 

H0 as P(child helps) depends only on the child, for which 
the optimal inference is 0.5 for a single parameter.  Next, we 
instead consider the (sole) alternative hypothesis HA where 
P(child helps) depends on both the child and the specific 

                                                             
3 https://github.com/taoketao/Probabilistic-Variable-Discovery  
4 Goodman, 2016 



experiment, where the optimal inferred parameters are just 
above 0 and just below 1 for two different, independently-
chosen parameters.  

Each hypothesized model is identified with optimal 
parameters for the given data using a standard Infer, run 
using Markov Chain Monte Carlo, with 30,000 samples. 

Results 
Let the notation [k1,k2] drawn from (n1,n2) represent an 
observation of two n-Binomial data, where each k is the 
number of ‘true’ observations in a trial of size n, denoted N 
when all the n values are the same.  Over the single data 
point [0,10] for N=10, we see that the HA model with two 
free parameters can better explain the data than H0 model, 
with confidence above 0.99.  This intuitively makes sense.  
In our hypothesis encoding, this represents the HA=(0,1) is 
much more likely than H0=(0,0), representing that the 
corresponding data points were drawn from the unique, 
independent variables labeled 0 or 1.  Our data yielded this 
result: 

 
 

Figure 1: The probability that [0,10] was drawn from the 
same (0,0) or different (0,1) variables. 

We also ran the program on other data, and other notable 
results are: 

a) Data [5,5] yields that model H0 has probability 
about 0.57 and HA has 0.43.  This follows the 
intuition around the Bayes Occam’s Razor: while 
both models have all optimal parameters at 0.5, the 
original hypothesis is simpler and thus a better ‘fit’ 
compared to the overfit alternative model.  Similar 
probabilities are found for data (2:10, 2:10). 

b) For our tests on n1 = n2 = 10, The most indecisive 
data are: (0,1), (2,4), and (3,5). 

c) The following is a heatmap of P(H0) per data pairs, 
where red indicates higher P(H0): 

 
 

Figure 2: Heatmap 
 

Consider all possible data that takes on values of [0,10]^2, 
we see that the original hypothesis H0 = (0,0) = the data 
were drawn from the same variable is strong along the axis 
k1=k2 and strongest at the corners k1=k2=0 or k1=k2=10, 
compared to the single alternative hypothesis HA = (0,1) = 
the data came from different variables. 

Hypothesis Class Size 
In our baseline system, we were able to exhaustively 
consider each hypothesis since there were only two 
reasonable options.  As a general framework, these 
hypotheses represent the N=2 realization of the Unique 
Ordered Set Equivalence problem, where (0,0) and (0,1) 
where digits represent which sets are equivalent to each 
other as an encoding.  In the context, these represent 
whether two or more datapoints are drawn from the same 
distribution.  As N increases, the number of sets that must 
be considered increases in O(n^2), and specifically follows 
the pattern of Bell Exponential Numbers; their curve is 
indicated below: 

 
Figure 3: Depth vs. Hypothesis Class Size 

As the depth of computation increases as the number N of 
data points increases, the number of possible hypotheses 
grows at N^2.  At least it’s not exponential! 

Several values of the Bell numbers are 1, 2, 5, 15, 203, 
877, 4140, and 21147 for N=1 to N=8. 

As such, the ability to consider all hypotheses becomes 
considerably more difficult to either generate and consider: 
in another examination, we ran a study where we fixed the 
amount of compute and increased the size of the hypothesis 
class by increasing N, the number of dimensions of the data 
that we were considering.  The result of this study confirms 
that the probable mass of the full hypothesis class that we 
can examine decreases rapidly as N grows: 
 



 
 

Figure 4: Hypothesis Class Probabilities 
 

This problem is relevant because our ability to enumerate 
all hypotheses that might explain the data for large N 
becomes infeasible.  For a child-psychologist modification 
that considers 10 groups of 10 children, the enumerative 
program takes nearly eight minutes to compute.  One 
solution we tried was to infer hypotheses (using the 
Markov-Chain Monte Carlo or MCMC method) that were 
appropriate, in a necessary ‘outer’ inference for hypotheses 
wrapping the ‘inner’ inferences that compute the fitness of 
given hypothesized models to the data.  We were able to 
decrease the runtime by about a factor of two with this 
sampling method before the hypothesized models deviated 
by more than 30% of the ideal labels. 

Our ability to generate samples brings another issue:  in 
order to generate unique hypotheses, we had to make a 
scheme that ensures uniqueness, since for two variables for 
example, (0,1) is effectively the same as (1,0).   Our scheme 
for generating all hypotheses implicitly achieved such a 
scheme by ensuring that later-indexed digits for a 
hypothesis were no greater than one larger than any 
previous scheme; for example, for N=5, the scheme 
(0,1,0,0,2) would be valid while (0,2,3,4,0) would not.  
Notable traits are that the first digit is always zero and the 
last digit is the only slot that might take on the highest value 
of N-1.   

Our initial trial simply sampled hypotheses by generating 
sequential digits by random uniform selection.  
Unfortunately, we realized that this scheme results in a 
skewed distribution for final digits, even with MCMC; 
sequences that start with zeros are considerably more likely 
(by a factor of O(n^2): see Bell’s Triangle) than sequences 
that do not.  This results in hypothesis class samples that are 
unable to consider data with more variation in the beginning 
of their data.  We also figured that a normalization is 
definitely possible but that its implementation would require 
an algorithm that can generate Bell numbers and would be 
rather memory-intensive, as the probabilities of all the 
alternative selections at any given point in the sequence 
would need to be known.  To verify, we generated the 
expected digit for a given index of a sequence, and we can 
see that the average value is monotonically increasing and 
increasingly favorable towards more 0s than higher digits. 

 
 

Figure 5: Expected Value of Sampled Hypotheses 
 
Alternatively, this hypothesis-sample distribution actually 

lends well to a different interpretation.  Since the average 
sampled hypothesis yields a determined distribution that 
favors more grouped elements at the start of the sequence, a 
valid preprocessing technique that clusters similar values at 
the start of a sequence would appropriately bias the data in a 
way that this system would generate centered, fitting 
hypotheses.  Any clustering scheme that simply reorders the 
order of the sequential data points would be sufficient.  
Appropriate cluster sizes would set to be continually 
decreasing; for example, let the sequential clusters be 
roughly of size (½, ¼, ⅛, …) or even faster-decreasing and 
our algorithm should perform roughly well. 

In Extension 4(a), where we consider a dataset generated 
from a sampled hypothesis and attempt to estimate the 
original hypothesis from that data, the hypotheses drawn 
from the hypothesis class distribution were not normalized, 
drawn instead from this biased distribution favoring many 
smaller digits earlier in the sequence.  We make note that 
this can be understood as a preprocessed dataset that was 
indeed clustered in the scheme mentioned above.  The 
sampled hypotheses that are later considered are drawn from 
this same distribution, and as such, can be considered 
relatively unbiased, regardless of the size of N. 

Extension (a): Lossy Model Recreation 
As an extension of our system to an applied task, we 
consider the problem of identifying an unknown model, 
knowing only data drawn from it.   

In this experiment, we generated a hypothesis, then 
sample a small number of datapoints from it, and finally 
infer a reasonable hypothesis to explain that data.  To make 
the task more difficult, we injected Gaussian noise into the 
generated data and we made no restriction on the 
repeatability of data values (eg, H=(0,1) may generate (5,5) 
as likely as any other pair).  

We provide results for a test where N=4, the values in 
consideration lay within [0,6], and the number of sampled 



data points was 20.  We see that sometimes the system was 
able to recognize the correct original hypothesis, sometimes 
was able to promote the correct one but was less able to 
make a confident decision, and sometimes was surprisingly 
incorrect.  We are unsure why the test was not as effective 
as imagined, and we hypothesize that increasing the number 
of values that the data can take (larger than 6) on would 
improve the system’s ability to differentiate between 
models.  We believe this mainly because the system was 
able to more reliably come up with the correct original 
hypothesis when more data values lay near the edge of the 
the dataset, i.e. just above 0 or just below 6. 

 
Figure 6: Hypothesis Selection 

Extension (b): Encoding Compression 
As another extension to our system, we consider the 
problem of restricting the maximum number of variables 
allowed, choosing the best hypothesis, and generating data 
from that hypothesis. 

We modified the hypothesis-generation process by putting 
an upper bound to the number of variables. For instance, 
given data of four experiments, and two variables, we would 
generate [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 
1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], and [0, 1, 1, 1]. We can view 
this restriction as a prior, or as a means of testing how much 
this restriction would alter our ability to generate data. 

Based on the new hypothesis-generation process, we 
generate a distribution of hypotheses. Then we select the 
best hypothesis from the distribution (e.g. [0, 0, 1, 1] for 
experiment data [1/10, 2/10, 9/10, 10/10]). 

Then we based on this hypothesis, we generate the data. 
We take the average of all experiment data attached to that 
variable — in the given example, you would have variable 0 
map to 3/20, and variable 1 map to 19/20. Then we sample 
from that generated distribution for each experiment data. 

The following is an example with data of 8 experiments, 
and recreating that data with fixed number of variables. The 
original experiment data had k values of [0, 0, 9, 8, 4, 1, 1, 
10], and n values of [10,10,10,10,10,10,10,10], as shown in 
Figure 7. 

 
Figure 7: Original Experiment Data 

 

 
Figure 8: Recreated Data with 8 Variables 

 

 
Figure 9: Recreated Data with 4 Variables 

 

 
Figure 10: Recreated Data with 3 Variables 

 
From here on out (in Figure 11 and 12), you can see that 

restricting the number of variables has a significant impact 
on the data we generate, as the shape of the sampled data 



deviates heavily from the original experiment data. This 
might be a threshold at which restriction (and simplicity) 
does not pay off.  

 
Figure 11: Recreated Data with 2 Variables 

 

 
Figure 12: Recreated Data with 1 Variable 

Conclusion 
In this study, we are excited to have demonstrated the power 
of probabilistic programming.  We demonstrated that the 
difficult tasks of unsupervised hidden variable discovery, 
model selection, and diverse data analysis can be effectively 
solved using probabilistic inference in a relatively concise 
framework.  We are excited about the prospect that this 
model lends itself to self-reference, as it was fundamentally 
a probabilistic program that analyzes other probabilistic 
programs.  We are enthralled by the accuracy of some of the 
results.  We observed long compute times, but we are 
observed that the numerous hyper-parameters can be 
tweaked for individual problems to yield better 
performance.  We showed that our system can extend to 
various other problems, given weak preprocessing 

conditions. We also showed that our system can eliminate 
variables, and see if the data generated from a more 
constrained model resembles the original data. 
 
Use standard APA citation format. Citations within the text 
should include the author's last name and year. If the 
authors' names are included in the sentence, place only the 
year in parentheses, as in Newell and Simon (1972), but 
otherwise place the entire reference in parentheses with the 
authors and year separated by a comma (Newell & Simon, 
1972). List multiple references alphabetically and separate 
them by semicolons (Chalnick & Billman, 1988; Newell & 
Simon, 1972). Use the “et al.” construction only after listing 
all the authors to a publication in an earlier reference and for 
citations with four or more authors. 

Additional Results 
Besides the original motivating example of two researchers 
observing [0/10] and [10/10], we were able to find 
comparable results that match intuition well.  These are 
presented below.  In these graphs, as elsewhere, the 
horizontal axis points out the various hypotheses mapped to 
their inferred probabilities, for given K datasets drawn from 
integers up to N.  We observe, as sounds reasonable, that the 
system can reliably weight hypotheses, expresses an 
Occam’s Razor effect for preference for simpler models 
when appropriate, and finds that two pairs of datapoints 
with the same distances between them are more likely to be 
drawn from the same variable if they were centered nearer 
the center of the data space, around N/2.  For example, in 
[0,2,4,6], the system is much more likely to think that 2 and 
4 were from the same variable than 0 and 2 were. 
 

 
Figure 13: 3-Experiment Hypothesis Testing 

 
Figure 14: 4-Experiment Hypothesis Testing 



References  
Koller, Daphne, and Nir Friedman. Probabilistic graphical 

models: principles and techniques. MIT press, 2009. 
OEIS Foundation Inc. (2011), The On-Line Encyclopedia of 

Integer Sequences, http://oeis.org. 
N. D. Goodman and J. B. Tenenbaum (2016). Probabilistic 

Models of Cognition (2nd ed.). Retrieved 2016-12-14 
from http://probmods.org/v2 

 
Written December 2016. 


